
PSYCH-GA.2211/NEURL-GA.2201 – Fall 2020
Mathematical Tools for Neural and Cognitive Science

Homework 1

Due: 24 Sep 2020
(late homeworks penalized 10% per day)

See the course web site for submission details. Please: don’t wait until the day before the due
date... start now!

1. Inner product with a unit vector. Given unit vector û, and an arbitrary vector ~v, write
(Matlab) expressions for computing:

(a) the component of ~v lying along the direction û,
(b) the component of ~v that is orthogonal (perpendicular) to û, and
(c) the distance from ~v to the component that lies along direction û.

Verify that your code is working by testing it on random vectors û and ~v (generate these
using randn, and don’t forget to re-scale û so that it has unit length). First, do this visually
with 2-dimensional vectors, by plotting û, ~v, and the two components described in (a) and
(b). (hint: execute ”axis equal” to ensure that the horizontal and vertical axes have the same
units). Then test it numerically in higher dimensions (e.g., 4) by writing expressions to verify
each of the following, and executing them on a few randomly drawn vectors ~v:

• the vector in (a) lies in the same (or opposite) direction as û.

• the vector in (a) is orthogonal to the vector in (b).

• the sum of the vectors in (a) and (b) is equal to ~v.

• the sum of squared lengths of the vectors in (a) and (b) is equal to ||~v||2.

2. Testing for (non)linearity. Suppose, for each of the systems below, you observe some
example input/output pairs of vectors (or scalars). Determine whether each system could
possibly be a linear system. If not, explain why. If so, provide an example of a matrix that
is consistent with the observed input/output pairs, and state whether you think that matrix

2

is unique (i.e., the only matrix that is consistent with the observations).

System 1: [2, 4] −→ 1
[-2, 0] −→ 3

System 2: 1 −→ [4, 6]
0.5 −→ [2, 6]

System 3: [3, 1.5] −→ [-6, -6]
[-2, -1] −→ [4, 4]

System 4: [1, 2] −→ [3, 1]
[1, -1] −→ [-1, 4]
[3, 3] −→ [5, 8]

System 5: 0 −→ [0, 11]

3. Geometry of linear transformations. The files sysN.p (where N=1,2,3,4) each provide
a function that implements a linear system whose input and output are both 2-dimensional
vectors. For each of these:

(a) Generate 30 random 2D inputs using randn. Compute the corresponding outputs. Plot
30 line segments from each input to output, labeling input and output with different
symbols or colors (use hold on, and plot points at start and end of each segment).
Describe, in words, what the system is doing to the input space.

(b) Characterize the system, by measuring its response to impulses, and embedding these
in a matrix. Compute the SVD of this matrix, and explain how the components of the
SVD relate to the description you provided in the previous part.

4. A simple visual neuron. Suppose a retinal neuron in a particular species of toad generates
responses that are a weighted sum of the (positive-valued) intensities of light that is sensed at
5 localized regions of the retina. The weight vector is [1, 4, 5, 4, 1]. (a) Is this system linear?
If so, how do you know? If not, provide a counterexample. (b) What unit-length stimulus
vector (i.e., vector of light intensities) elicits the largest response in this neuron? Explain
how you arrived at your answer. (c) What physically-realizable unit-length stimulus vector
produces the smallest response in this neuron? Explain your reasoning. [hint: visualize a
simpler version of the problem, in 2 dimensions]

5. Gram-Schmidt. A classic method for iterative construction of an orthonormal basis is
known as Gram-Schmidt orthogonalization. First, one generates an arbitrary unit vector
(typically, by normalizing a vector created with randn). Each subsequent basis vector is
created by generating another arbitrary vector, subtracting off the projections of that vector
along each of the previously created basis vectors, and normalizing the remaining vector.

Write a Matlab function gramSchmidt that takes a single argument, N , specifying the
dimensionality of the basis. It should then generate an N ×N matrix whose columns contain
a set of orthogonal normalized unit vectors. Try your function for N = 3, and plot the
basis vectors (you can use Matlab’s rotate3d to interactively examine these). Check your
function numerically by calling it for an N much larger than 3 (e.g. 1000) and verifying

3

that the resulting matrix is orthonormal (hint: you should be able to do this without using
loops). bf Extra credit: make your function recursive – instead of using a for loop, have
the function call itself, each time adding a new column to the matrix of previously created
orthogonal columns. To do this, you’ll probably need to write two functions (a main function
that initializes the problem, and a helper function that is called with a matrix containing the
current set of orthogonal columns and adds a new column until the number of column equals
the number of rows).

6. Null and Range spaces. Imagine you have a linear system characterized by matrix M ,
which takes as input a vector, ~v, and outputs a vector, ~y, such that ~y = M~v. Explain in a few
sentences what the null and range spaces of the matrix are. Imagine a creature that has a
linear sensory system: it takes a vector input (e.g., an array of light intensities) and produces
a vector output (a set of responses that represent attributes). If the system has as non-zero
null space, what does this tell you about the creature’s perceptual capabilities? If the system
has a range space that does not cover the full output space, what might a neuroscientist
expect to see in experimental measurements of the system’s responses?

Load the file mtxExamples.mat into your Matlab world. You’ll find a set of matrices named
mtxN, with N = 1, 2.... For each matrix, use the SVD to: (a) determine if there are non-
trivial (i.e., non-zero) vectors in the input space that the matrix maps to zero (i.e., determine
if there’s a nullspace). If so, write a Matlab expression that generates a random example
of such a vector, and verify that the matrix maps it to the zero vector; (b) write a Matlab
expression to generate a random vector y that lies in the range space of the matrix, and then
verify that it’s in the range space by finding an input vector, x, such that Mx = y.

