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Section 6:

Model fitting:
comparison, selection and regularization

Taxonomy of model-fitting errors

Unexplainable variability (due to finite/noisy
measurements)

Optimization failures (e.g., local minima)

Bad model

Overfitting (too many params, not enough data)

Optimization...

Heuristics,
exhaustive search,
(pain & suffering)

Iterative descent,
possibly non-unique
(local minima)
Quadratic
Iterative descent,

unique

Closed-form,
and unique




Model Comparison

« If models are optimized to fit data according to some
objective, it is natural to compare them based on the value of
that objective.

- for least squares estimates, we can compare the residual
squared error of two regression models (with different
regressors).

- for ML estimates, common to compute the likelihood (or
log likelihood) ratio, and compare to 1 (or zero).

- for MAP estimates, common to compute the posterior
ratio (a.k.a. the Bayes factor)

* Problem: evaluating the objective with the same data used to
optimize the model leads to over-fitting! We really want to
predict error on non-training data...
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Comparing models’ predictive performance

Option 1: Include a penalty for number of parameters:
given the ML estimate: 6 = arg min p( Z| 0)
0
a. Compare Akaike information criterion (AIC) [Akaike, 1974]
Exc(d.0) =2 dim@ - 21n (p(d10))
b. Compare Bayesian information criterion (BIC) [schwartz, 1978]
Egie(d.0) = dim(@) In (dim(d)) = 21n (p(d1))
valid when dim(d) >> dim(9)

Option 2: Cross-validation: partition data into two subsets, fit
parameters to “training” subset, evaluate objective on “test”
subset.




Cross-validation

A resampling method for estimating predictive error of a model.
Widely used to identify/avoid over-fitting, and to provide a fair
comparison of models.
Using cross-validation to select the
degree of a polynomial model:

(1) Randomly partition data into 10
a “training” set, and a “test” set. T lrain error
(2) Fit model to training set. . —— true degree
Measure error on test set. 10 ——true error
(3) Repeat (many times)

é 10°
(4) Choose model that
minimizes the average cross- o
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Ridge regression
(a.k.a. Tikhonov regularization)

B
Ordinary least squares regression:

OLS estimate

Ridge
estimate
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“Regularized” least squares regression:

arg min 17— XBII* + A2

7th-order polynomial regression:

* data
LSreg
——Ridge reg

Equivalent formulation: MAP estimate,
assuming Gaussian likelihood & prior!

Bridge = (XTX + X)X Ty — -

Choose lambda by cross-validation:
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from http://www.stat.cmu.edu/~ryantibs/datamining/




L; regularization

(a.k.a. “least absolute shrinkage and selection operator” - LASSO)
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[derivation on board] Bridge
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MAP interpretation:
Gaussian noise,
Laplacian prior
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multi-dimensional LASSO
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Using an absolute error regularization term promotes
binary selection of regressors:
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From Hastie, Tibshirani, Wainwright 2015

LASSO vs. ridge regression

Table 2.1 Crime data: Crime rate and five predictors, for N =50 U.S. cities.

city | funding hs not-hs college college4 crime rate
1 40 74 11 31 20 478
2 32 72 11 43 18 494
3 57 70 18 16 16 643
4 31 71 11 25 19 341
i 67 72 9 29 24 773
50 66 67 26 18 16 940
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The “Relaxed LASSO”

To reduce bias, re-solve for non-
zero coefficients after eliminating
unused regressors

LASSO

Clustering
» K-Means (Lloyd, 1957)

* “Soft-assignment” version of K-means
(a form of Expectation-Maximization - EM)

* In general, alternate between:
1) Estimating cluster assignments
2) Estimating cluster parameters

* Coordinate descent: converges to (possibly local) minimum

* Need to choose K (number of clusters) - cross-validation!

K-Means algorithm - alternate between two steps:

« Estimating cluster assignments: given class centers,
assign each point to closest one.

Soap bubbles:

« Estimating cluster parameters: given assignments, re-
estimate the centroid of each cluster.




K-means example

Here X; € R?, n =300, and K =3

Initial centers Heration 1

Heration 2

Heration 3 Meration 9

[from R. Tibshirani, 2013]

Warning: Initialization matters (due to local minima) ...

Three solutions obtained with different random starting points:
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[from R. Tibshirani, 2013]

K-means failures

Non-convex/non-round-shaped clusters

Clusters with different densities

’.

Picture courtesy: Christof Monz (Queen Mary, Univ. of London)




ML for discrete mixture of Gaussians: soft K-means

(@i, ik Ar) oc 3~ o= @) A o) /2
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Ank = assignment probability
{fk, Ak} =mean/covariance of class n
Intuition: alternate between maximizing these two sets of variables

(“coordinate descent™)

Essentially, a version of K-means with “soft” (i.e., continuous, as
opposed to binary) assignments!

Different cluster analysis results on "mouse" data set:
Original Data k-Means Clustering EM Clustering
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[wikipedia]

Application to neural “spike sorting”

Standard solution:
1. Threshold to find segments containing spikes
2. Reduce dimensionality of segments using PCA

3. Identify spikes using clustering (e.g., K-means)

Note: Fails for overlapping spikes!




Failures of clustering for near-synchronous spikes

synchronous spiking

-

PC 1 projection

[Pillow et. al. 2013]

Simulated data [Quirogaet. al. 2004]

clustering (K-means) CBP

omiss o
+ false positive

PC1 PC1

[Ekanadham et al, 2014]
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