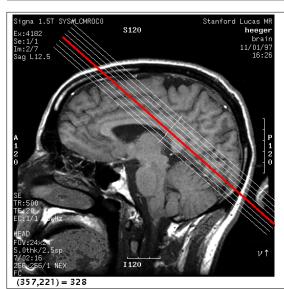
Mathematical Tools for Neural and Cognitive Science

Fall semester, 2020

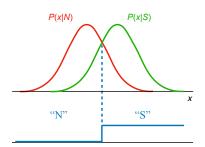
Section 5a:

Statistical Decision Theory + Signal Detection Theory

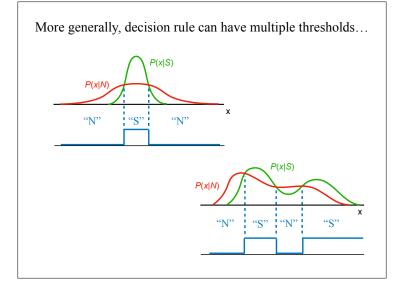


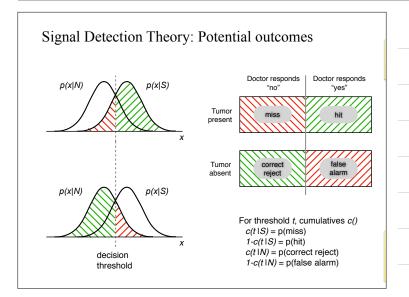
Tumor, or not?

Signal Detection Theory (binary estimation)



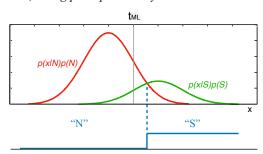
For equal-shape, unimodal, symmetric distributions, the ML decision rule is a *threshold* function.





MAP decision rule?

MAP solution maximizes proportion of correct answers, taking prior probability into account.



Compared to ML threshold, the MAP threshold moves *away* from higher-probability option.

Bayes decision rule?

Incorporate values for the four possible outcomes:

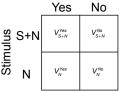
Payoff Matrix

Response

		163	INO
Stimulus	S+N	$V_{S+N}^{ m Yes}$	V _{S+N}
Stim	N	$V_{_{N}}^{^{\mathrm{Yes}}}$	$V_{\scriptscriptstyle N}^{\scriptscriptstyle No}$

Bayes Optimal Criterion

Response



$$\begin{split} \mathbb{E}(Yes \mid x) &= V_{S+N}^{Yes} p(S+N \mid x) + V_N^{Yes} p(N \mid x) \\ \mathbb{E}(No \mid x) &= V_{S+N}^{No} p(S+N \mid x) + V_N^{No} p(N \mid x) \end{split}$$

Say yes if $\mathbb{E}(Yes \mid x) \ge \mathbb{E}(No \mid x)$

Optimal Criterion

$$\mathbb{E}(Yes \mid x) = V_{S+N}^{Yes} p(S+N \mid x) + V_N^{Yes} p(N \mid x)$$

$$\mathbb{E}(No\,|\,x) = V^{No}_{S+N}p(S+N\,|\,x) + V^{No}_Np(N\,|\,x)$$

Say yes if $\mathbb{E}(Yes \mid x) \ge \mathbb{E}(No \mid x)$

$$\text{Say yes if } \frac{p(S+N \,|\, x)}{p(N \,|\, x)} \geq \frac{V_N^{No} - V_N^{Yes}}{V_{S+N}^{Yes} - V_{S+N}^{No}} = \frac{V(\operatorname{Correct} \,|\, N)}{V(\operatorname{Correct} \,|\, S+N)}$$

Apply Bayes' Rule

Posterior Likelihood
$$p(S + N \mid x) = \frac{p(x \mid S + N)p(S + N)}{p(x)}$$
 Nuisance normalizing term

$$p(N \mid x) = \frac{p(x \mid N)p(N)}{p(x)}$$
, hence

$$\frac{p(S+N\mid x)}{p(N\mid x)} = \left(\frac{p(x\mid S+N)}{p(x\mid N)}\right) \left(\frac{p(S+N)}{p(N)}\right)$$
Posterior odds

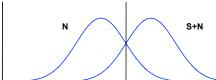
Likelihood ratio

Optimal Criterion

Say yes if
$$\frac{p(S+N \mid x)}{p(N \mid x)} \ge \frac{V(\text{Correct} \mid N)}{V(\text{Correct} \mid S+N)}$$

i.e., if
$$\frac{p(x \mid S + N)}{p(x \mid N)} \ge \frac{p(N)}{p(S + N)} \frac{V(\text{Correct} \mid N)}{V(\text{Correct} \mid S + N)} = \beta$$

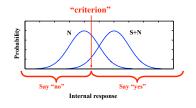
Example, if equal priors and equal payoffs, say yes if the likelihood ratio is greater than one:

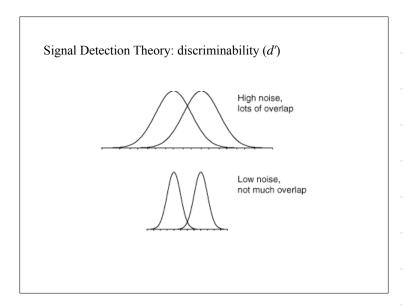


Example applications of SDT

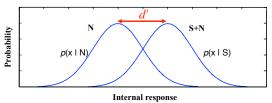
- Vision
- Detection (something vs. nothing)
- Discrimination (lower vs greater level of: intensity, contrast, depth, slant, size, frequency, loudness, ...
- Memory (internal response = trace strength = familiarity)
- Neurometric function/discrimination by neurons (internal response = spike count)

From experimental measurements, assuming human is optimal, can we determine the underlying distributions and criterion?





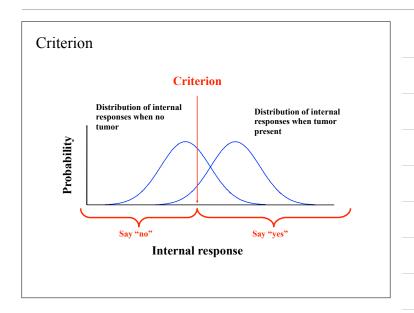
Internal response: probability of occurrence curves

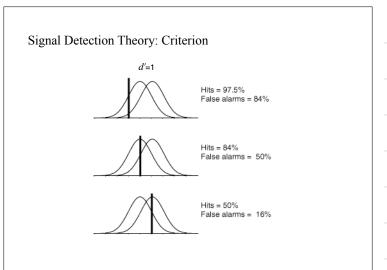


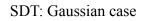
 $d' = \frac{\text{"separation"}}{\text{"width"}}$

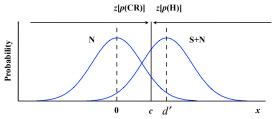
Discriminability ("d-prime") is the normalized separation between the two distributions

Error rate is a function of d'







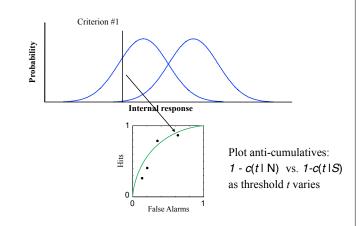


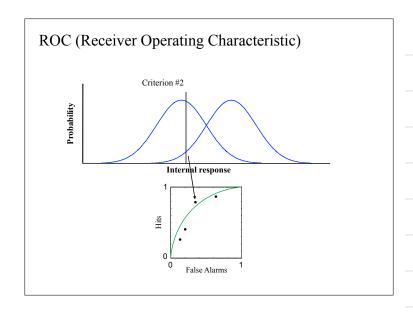
$$d' = z[p(H)] + z[p(CR)] = z[p(H)] - z[p(FA)]$$

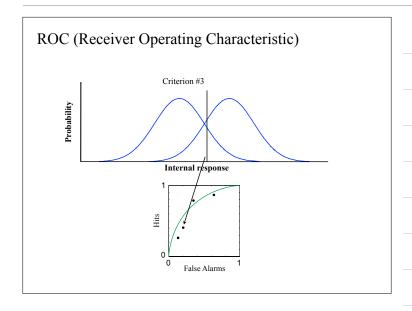
$$c = z[p(CR)] \qquad G(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma}} e^{-(x-\mu)^2/2\sigma^2}$$

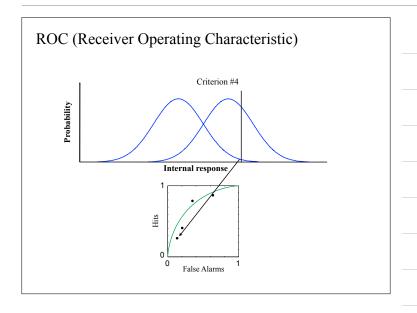
$$\beta = \frac{p(x = c \mid S + N)}{p(x = c \mid N)} = \frac{e^{-(c-d')^2/2}}{e^{-c^2/2}} \qquad (\text{Fix } \sigma = 1)$$

ROC (Receiver Operating Characteristic)







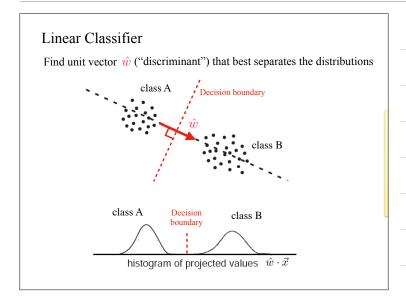


ROC (Receiver Operating Characteristic) $d' = 1 \text{ (lots of overlap)} \qquad d' = 3 \text{ (less overlap)}$ ROC curves

Decision/classification in multiple dimensions

False alarms
[on board: Area under curve = %correct in a 2AFC task]

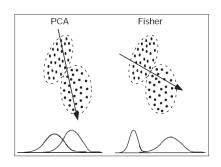
- Data-driven:
 - Prototype Classifier minimize distance to class mean
 - Fisher Linear Discriminant (FLD) maximize d'
 - Support Vector Machine (SVM) maximize margin
- Statistical:
 - ML/MAP/Bayes under a probabilistic model
 - e.g.: Gaussian, identity covariance (same as Prototype)
 - e.g.: Gaussian, equal covariance (same as FLD)
 - e.g.: Gaussian, general case (Quadratic Discriminator)
- Some Examples:
 - Visual gender classification
 - Neural population decoding



Simplest linear discriminant: the Prototype Classifier

$$\hat{w} = \frac{\vec{\mu}_A - \vec{\mu}_B}{\|\vec{\mu}_A - \vec{\mu}_B\|}$$

Fisher Linear Discriminant



$$\max_{\hat{w}} \frac{\left[\hat{w}^T (\overrightarrow{u}_A - \overrightarrow{u}_B)\right]^2}{\left[\hat{w}^T C_A \hat{w} + \hat{w}^T C_B \hat{w}\right]} \quad \text{(note: this is "d-prime" !)}$$

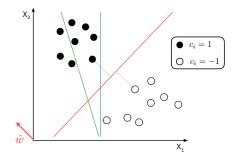
optimum: $\hat{w} = C^{-1}(\overrightarrow{u}_A - \overrightarrow{u}_B)$, where $C = \frac{1}{2}(C_A + C_B)$

Support Vector Machine (SVM)

(widely used in machine learning, but no closed form solution)

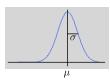
Maximize the "margin" (gap between data sets):

find largest m, and $\{\hat{w}, b\}$ s.t. $c_i(\hat{w}^T \vec{x}_i - b) \geq m, \quad \forall i$



Reminder: Multi-D Gaussian densities

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

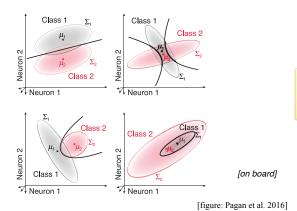


$$p(\vec{x}) = \frac{1}{\sqrt{(2\pi)^N |C|}} e^{-(\vec{x} - \vec{\mu})^T C^{-1} (\vec{x} - \vec{\mu})/2}$$

mean: [0.2, 0.8] cov: [1.0 -0.3; -0.3 0.4]

ML (or MAP) classifier for two Gaussians

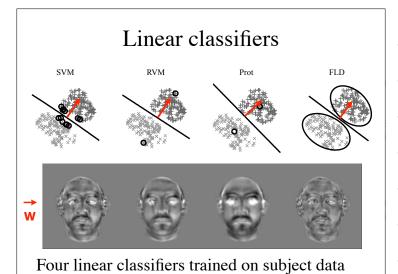
Decision boundary is *quadratic*, with four possible geometries:



A perceptual example: Gender identification

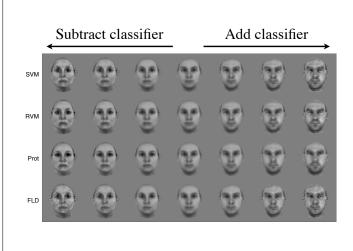
- •200 face images (100 male, 100 female)
- Adjusted for position, size, intensity/contrast
- •Labeled by 27 human subjects

[Graf & Wichmann, NIPS*03]

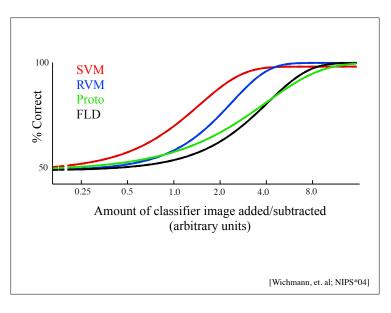


Model validation/testing

- Cross-validation: Subject responses [% correct, reaction time, confidence] are explained
 - very well by SVM
 - moderately well by RVM / FLD
 - not so well by Prot
- Curse of dimensionality strongly limits this result. A more direct test: Synthesize optimally discriminable faces...



[Wichmann, et. al; NIPS*04]



Fisher Information

• Second-order expansion of the (expected) negative log likelihood:

$$I(s) = -\mathbb{E}\left[\frac{\partial^2 \log p(r|s)}{\partial s^2}\right]$$

- • Provides a bound on "precision" of unbiased estimators: $\text{(the "Cramer-Rao" bound)} \qquad \sigma^2(s) \geq \frac{1}{I(s)}$
- • Perceptually, provides a bound on discriminability d'(s): (Series et. al. 2009) $d'(s) \leq \sqrt{I(s)}$
- Examples: assume mapping f(s) from stimulus to mean response, then:

Gaussian case: $~p(r|s) \sim \mathcal{N}(f(s), \sigma^2)~~I(s) = [f'(s)]^2/\sigma^2$

Poisson case: $p(r|s) \sim \operatorname{Poiss}(f(s))$ $I(s) = [f'(s)]^2/f(s)$

Example: Weber's law

$$d'(s) \propto \frac{1}{s} \leq \sqrt{I(s)}$$

Assuming $I(s) \propto \frac{1}{s^2}$ what internal representation could explain this?

Fechner (1860):

but with Poisson noise:

(implicitly, assumes constant internal noise)

