Mathematical Tools
for Neural and Cognitive Science

Fall semester, 2020

Section 2: Least Squares

Least squarcs regression: “objective” or “error"
function
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Geometry:

Note: this is a 2-D cartoon
of the N-D vectors, not the
two-dimensional (x,y)
measurement space of
previous plots!

Note: partition of sum of squared data values:
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Solution via the “Orthogonality Principle™:

Construct matrix X, containing columns #;and T

2D vector space
containing all linear
combinations of Z;
and 22

Alternatively, can solve using SVD...
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where 7* =U"Ty, [*=V"3
Solution:  B5,¢ x = Yr/sk, for each k

or g* = S#gj'* = B)opt - VS#UTZJ
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[on board: transformations, elliptical geometry]

Fitting a parametric model (general)

=N

To fit model f3(Z) to data {Zn,¥n},

optimize parameters [ to minimize an error function:
min Y E (fn: f5(#n)
n

Ingredients: data, model, error function, optimization algorithm




Optimization problems

Heuristics,
exhaustive search,
(pain & suffering)

Iterative descent,
(possibly) nonunique

Quadratic
Iterative descent,
guaranteed

Closed-form
guaranteed

Be careful with interpretation: fitting a line
does not guarantee data actually lie along a
line

These 4 data sets give the same regression fit, and same error:
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Polynomial regression - how many terms?
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(to be continued, when we get to “statistics™...)
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Weighted Least Squares

— min [ W (7 - 62)

diagonal matrix

Solution via simple extensions of basic regression solution
(ie,let ¥* =Wy and £* = WZ and solve for 3 )
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Solution 1: “trimming”... discard points with “large” error.
Note: a special case of weighted least squares.

® data
- = —true
Lsfit
trimmedLSfit
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Trimming can be done iteratively (discard outlier, re-fit, repeat),
a so-called “greedy” method. When do you stop?




Solution 2: Use a “robust” error metric.
For example:

f(d) = d*

£(d) = log(c? + d?)

“Lorentzian”

Note: generally can’t obtain solution directly (i.e., requires an
iterative optimization procedure).

In some cases, can use iteratively re-weighted least squares (IRLS)...

Iteratively Re-weighted Least Squares (IRLS)

initialize: wg)) =1

50 = argmin Y wf? (4 — 502,)
iterate " iterate
Wit — fyn — 5_(i)xn)
" [Yn — ﬁ(l)xn|

(one of many variants)

Constrained Least Squares

Linear constraint:
min |y — XS ||*, where ¢ - f = a
B
Quadratic constraint:
NS 22 2
min ||y — X ||, where || f]|© =1
B

Both can be solved exactly using linear algebra (SVD)...
[on board, with geometry]




rotate by V7 stretch/squeeze by S* (nonzero rows of S)
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Solution:
Beopt =V (S) 1 (G ™ 1€

) Write solution as: (3.5, = " +7¢""

Solve for ~:

("**)T = ek

Standard Least Squares regression

Error is vertical distance °
. “ Yy
(in the “dependent
variable”) from the fitted ~
line... °
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Total Least Squares Regression
(ak.a “orthogonal regression”)

Error is squared distance 4
from the fitted line...

>

expressed as: min ||Da||?, where ||a|]* = 1
u

Note: “data” matrix D now includes both x and y coordinates

Variance of data D, projected onto axis 4: T o min
lUSVTal? = [|SVTal[? = ||sa*|[* = [|a=| P, o
where D = USVT, a* = VT4, @ = Sa* —_—

OO D

Set of u’s of Set of @™s of First two components
length 1 length 1 of @** (rest are zero!),
(i.e., unit vectors) (i.e., unit vectors) for three example S ’s.

Eigenvectors/eigenvalues

Define symmetric matrix: * An eigenvector is a vector that is
rescaled by a matrix (i.e.,
c=DTD direction is unchanged)
. T\T T ¢ The corresponding scale factor is
= (USV)(USVT) called the eigenvalue
TyrT T .
=Vsiu usv e The columns of V' (denoted 0y)
_ V( ST S)VT are eigenvectors of C, with
corresponding eigenvalues s? :
« “rotate, stretch, rotate back” Ciop = V(STS)V T,
e The matrix C “sum_marizes” the =V( sT S)éx
shape of the data with an ger
ellipsoid: principal axes are =spVeég
columns of V, dimensions are 2
= SV

diagonal elements of S




Principal Component Analysis (PCA)

The shape of a data cloud can be summarized with an ellipse
(ellipsoid) using a simple procedure:

(1) Subtract mean of all data points, to re-center around origin
(2) Assemble centered data vectors in rows of a matrix, D
(3) Compute the SVD of D:

D=USVT

or equivalently compute eigenvectors of C' = DT D:
C=VAVT

(4) Columns of V are the principal components (axes) of

the ellipsoid, diagonal elements s, orv/Ax are the
corresponding principle radii

Example: PCA for dimensionality reduction and visualization
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[Russo et. al., 2018]




