Lab 8

Probability and Bayesian Estimation

Revised from
Zhiwei Li

Probability and logic

¢ Suppose you know the probability of event A and event B
happening to be P(A) and P(B). How do you describe the

probability of:
o P(A and B) = P(A)P(B) if they are independent events

e P(A or B) = P(A) + P(B) if they are mutually exclusive

e P(A or B) = P(A) + P(B) — P(A)P(B) if independent

Independence and
Marginals

A notA

B P(B)

Fill in marginals:
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Probability and logic

¢ Suppose you know the probability of event A and event B
happening to be P(A) and P(B). How do you describe the
probability of:

« P(A and B)

« P(AorB)
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on marginals:
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Conjunction fallacy

* You flip a coin for 6 times. Which of the following sequence
is most likely given the coin is fair?

o THTTT
o HTHTTT
« THHHHH

Conjunction fallacy

* You flip a coin for 6 times. Which of the following sequence is most likely given
the coin is fair?

« THTTT, probability = (1/2)°
« HTHTTT, probability = (1/2)°
« THHHHH, probability = (1/2)®
5
« 1 head in 5 flips, probability = (1>(1/2)'(1/2)5‘l ~ 0.1562

6
« 2 heads in 6 flips, probability = <2>(1/2)2(1/2)6‘2 ~ 0.2344
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Conjunction fallacy

* You flip a coin for 6 times. Which of the following sequence
is most likely given the coin is fair?

« THTTT, probability = (1/2)°
« HTHTTT, probability = (1/2)®
« THHHHH, probability = (1/2)°

Probability and logic

¢ Suppose you know the events A and B are not independent.
How do you describe the probability of:

* P(A and B)
« P(AorB)

o P(A or B, but not both)



Probability and logic

* Suppose you know the events A and B are not independent.

How do you describe the probability of:
0~ 0~
l P(BIA)
P(BIC)

« P(A or B, but not both) = P(A)P(B|A) + P(B)P(A| B)

« P(Aand B) = P(A)P(B|A)

« P(AorB) = P(A) + P(A)P(B|A)

Prosecutor’s fallacy

disease no disease

test negative

test postive

prevalence

Prosecutor’s fallacy
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test negative

Prosecutor’s fallacy

¢ Your Covid test result is positive. The test sensitivity is 90%
(i.e., P(positive test | infected) = 0.9), please start to panic

* You look at the NY Covid dashboard and learn that the
current infection rate is 2%, how panicked should you be?

* Your Covid test result is negative. The test specificity is 80%
(i.e., P(negative test | not infected) = 0.8. How relieved
should you be?

Prosecutor’s fallacy

disease no disease disease  nodisease  marginal

test negative test negative

test postive test postive

prevalence X X marginal 100,000

Prosecutor’s fallacy

disease no disease disease  nodisease  marginal

test negative 78,400

test postive test postive 1,800 19,600

prevalence marginal 2,000 98,000 100,000



Prosecutor’s fallacy

no disease

disease disease  nodisease  marginal

test negative

(BB HEEEE 200 78,400 78,600
test postive 0.90 0.20 test postive 1,800 19,600 21,400
prevalence 0.02 0.98 marginal 2,000 98,000 100,000

P(infected | test positive) = P(infected & test positive)/P(test positive) = 1,800/21,400 = 8.4%

Or P(infected | test positive) = P(test positive | infected)P(infected)/P(test positive)
=0.9%0.02/.214 =8.4%

’
Reply to prosecutor’s fallacy
* Your Covid test result is positive. The test sensitivity is 90% (i.e.,
P(positive test | infected) = 0.9), please start to panic.

* You look at the NY Covid dashboard and learn that the current
infection rate is 2%, how panicked should you be?

* The disease rate is low and the false-positive rate cannot be
ignored.

* Your Covid test result is negative. The test specificity is 80% (i.e.,
P(negative test | not infected) = 0.8. How relieved should you be?

* Quite relieved, despite the poor specificity of the test

The binomial distribution

Probability mass function for the binomial distribution
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Prosecutor’s fallacy

disease no disease disease  nodisease  marginal

test negative 78,400

test negative

78,600

test postive test postive 1,800 19,600 21,400

marginal 2,000 98,000 100,000

prevalence

P(not infected | test negative) = P(not infected & test negative)/P(test negative)
=78,400/78,600 = 99.75%

Or P(not infected | test negative) = P(test negative | not infected)P(not infected)/P(test neg)
=0.870.98/.786 = 99.75%

Coin flips and the Bernoulli
distribution

* The letter "e" has a frequency of 12% in English words.
How likely is its appearance in first names? Let’s ask 10
students in the room.

¢ How many student’s names do you expect to have the
letter “e”?

* What's the variance of this number?

Bernoulli distribution

¢ The letter “e” has a frequency of 12% in English
words. How likely is its appearance in first names?
Let’s ask 10 students in the room.

« X ~ Bernoulli(p).

X ~ Binomial(p, n=1) o Y=X, +X+ - + Xy (the sum of 10

independent random variables distributed the
mean=p same as X)

var=p(1-p). . EY)?

std(Y)? (thinking in terms of variance will be
easier)



Posterior distribution after a
coin flip

* The letter “e” has a frequency of 12% in English words. How
likely is its appearance in first names? Let’s ask 10 students
in the room.

* How far is your estimate from our real experimental result?

* What’s the posterior probability of letter “e” appearing in a
first name?

Beta distribution intuition

Beta(pla,b):

¢ a-1 =number of “hits” already
encountered

* b-1 = number of “misses”
already encountered

Conjugate priors

* Beta is the conjugate prior of Bernoulli.

* Normal is the conjugate prior of itself!

Beta distribution

* Support (range of x): [0,1]

* Interpreted as the Bernoulli
distribution parameter p.

* “Conjugate prior” of the Bernoulli
distribution.

e Parameter: a,b => Beta(pla,b)

Beta distribution update

What if we add 5 more data points that
* “hit” (by just asking people | know

. who, by chance, have “” in their first

_ names)?

- How will the distribution move?

- What should be the mode of the
posterior?

posterior = likelihood * prior

Beta = Bernoulli*Beta

P(x|data) o< P(data|x)P(x)



