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Roadmap
● Convolution: definition and interpretations
● Finite Dimensional Signals: boundary conditions and padding
● Exercises: 

○ The Mechanics
■ How do different padding settings relate to each other
■ Varying the kernel size 

○ Motivating Examples
■ Microscopy: the points spread function (PSF)
■ Convolutions in Vision



Linear Shift Invariant Systems
● Linear systems all obey the principles of homogeneity and superposition

○ Linear operators respect certain relationships between input elements, meaning that those 
relationships are preserved in the output

■ L(a*x) = a*L(x) → respects/preserves scaling
■ L(x + y) = L(x) + L(y) → respects/preserves addition

● Shift Invariant systems respect a different relationship between input 
elements...“shifting”

○ L(shift(x)) = shift(L(x))
○ What the heck is a shift? Shifts change the position of elements in the input vector

■ shift(x[i]) = x[i + n] for some fixed value of n
■ Shift with n = 2: 
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What types of relationships to shifts preserve? Ordering. This is a reasonable property 
to preserve (features stay in the same positions relative to each other).
LSI systems are linear systems with one more defining property/constraint.



LSI Systems as Matrices
● Linear System → We can describe the transformation with a matrix

○ First column is output of system in response to first basis/impulse vector
○ Subsequent columns are outputs in response to the other basis vectors, but these inputs are 

by definition shifted versions of the same vector → for LSI systems we only need to test the 
output to one input. 
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We can take our standard “kick the tires”/test with impulse approach to building the 
matrix, but shift invariance means we only have to kick one tire. 



LSI Systems as Matrices
● LSI system/convolution matrices also have a nice interpretation from the 

“rows,” perspective: the output at a given index is the inner product of part of 
the input with a reversed order copy of the kernel
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● So, in the usual way that we use the dot product to 
be a similarity measure, we can say that the output 
of an LSI  (or equivalently, the convolution of the 
input signal with the characteristic kernel) at a 
given position, is a measure of how similar part of 
the input is to the kernel

● This is the “sliding dot product,” interpretation. 

Explain format



LSI Systems as Matrices
● Terminology:

○ The matrix that represents a LSI system is called a “convolution matrix.”
○ The response to the first impulse vector, or the first column of the convolution matrix, is called 

the “impulse response,” or “kernel,” of the operator. 
○ We will often use the phraseology: “the output of an LSI system is the convolution of the input 

signal with the kernel.”



Why Bother? 
● When there is meaningful structure between elements of the input signal, 

describing the input-output function as an LSI system (or alternatively, 
describing the output as the convolution of the input with some fixed kernel) 
ensures that same structure is preserved in the output signal.

○ What kinds of signals have the type of structure that convolution respects? 
■ Time-series data, images, time-series of images, etc.

● Practical Benefits
○ Reduced degrees of freedom (overfitting/model complexity reduction)

Example of (nonlinear) space-shift invariant system: function that takes in an image 
and outputs object identity as a function of space
Time shift invariance: when you choose to measure a system does not affect its 
output. 
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Finite Dimensional Signals: Boundary Conditions
● Recall our definition of shift invariance

○ shift(x[i]) = x[i + n] for some fixed value of n
○ Or in general for finite LSI systems the definition of convolution is
○                 D d                                What happens when k > n? 

● For finite dimensional inputs, this definition cannot make sense everywhere…
○ Defining “shift invariance,” in these trouble spots ⇔ deciding on a set of boundary conditions
○ 3 most common are 

■ Zero Padding (‘same’, ‘valid’, ‘all’)
■ Circular Boundary Conditions
■ Mirrored Boundary Conditions



Zero Padding: ‘full’, ‘same’, and ‘valid’
● ‘valid’ option: only consider the outputs where all terms in definition are known
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● Only consider outputs 
where the kernel is entirely 
within the signal

To start we lean on the “sliding dot product interpretation,” and define valid as the 
condition without any zero padding. That is, the outputs only exist where the dot 
product makes sense. 



Zero Padding: ‘full’, ‘same’, and ‘valid’
● ‘full’ option: use every possible datapoint, assuming the unknown values are 

zero. 
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Assume x[-1] = x[-2] = 0.



Zero Padding: ‘full’, ‘same’, and ‘valid’
● ‘same’ option: zero pad on each side by an amount that makes the output 

size equal to the input size.
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● It is often convenient for 
either theoretical or 
practical reason for the 
output to have the same 
dimensionality as the input. 



Circular/Periodic Boundary Conditions
● Rather than assume unknown values are zero, assume values “wrap around”
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● Similar to full but with 
different assumption about 
missing values



Mirrored Boundary Conditions
● Padded values are the “reflection,” or values near the boundary

● Similar to full but with 
different assumption about 
missing values
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2-D Extensions
● Everything discussed so far has a direct extension to the two dimensional 

case: 
○ Shift invariance: LSI systems are invariant to shifts in both directions (two dimensional data 

structures, i.e. images, can be shifted in two directions independently). 
○ Padding: zeros surround data structure on both sides
○ Other boundary conditions: can be independently applied to each dimension 

■ Visual: a 360 degree panoramic photo might be taken to have circular boundary 
conditions along one dimension (horizontal), but use zero padding along the other 
(vertical) dimension. 



Exercise Set 1:
The Mechanics of Convolution



Motivating Example 1: Vision 

● Convolutions play an important role in both biological and artificial vision
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Motivating Example 1: Vision
● Convolution, especially via its role in convolutional neural networks, is the mathematical principle 

behind the recent rapid acceleration in computer vision. 
Imagine you want to learn a linear 
transformation between 2 sets of 
images (i.e. find M s.t. y~=Mx) 
where y and x are both image data. 
In general the size of M is huge 
(bad), but restricting the 
transformation to be convolutional 
means the only values that need to 
be optimized are the elements of 
the kernel. This idea is called 
“weight sharing.”

Explain using mouse how 2-D convolution works using sliding dot product 
interpretation. 



Motivating Example 1: Vision
● Convolution, especially via its role in convolutional neural networks, is the mathematical principle 

behind the recent rapid acceleration in computer vision. 
Imagine you want to learn a linear 
transformation between 2 sets of 
images (i.e. find M s.t. y~=Mx) 
where y and x are both image data. 
In general the size of M is huge 
(bad), but restricting the 
transformation to be convolutional 
means the only values that need to 
be optimized are the elements of 
the kernel. This idea is called 
“weight sharing.”

Look Back at convolution matrix examples, note how many values are restricted to be 
zero, this is what we save with convolution. 



Exercise Set 1:
Feature Extraction



Motivating Example 2: Microscopy 
● The output of an imaging system can be modeled as the convolution of an 

underlying signal (which is being measured/imaged) with a “point spread 
function,” which acts as a kernel. 

● The point spread function determines the resolution of the imaging system, 
among other important properties



Motivating Example 2: Microscopy 

● You may not always know ahead of time the 
value of a systems PSF. 

● Can you think of a way, given a set of known 
inputs and their outputs from the imaging system, 
to estimate the PSF? 

● Look at the example 

PSF is the “blob” representing how the imaging system represents what should be a 
single point. 



Exercise 3:
Determining the PSF 



Conclusion
● LSI systems are uniquely characterized by their kernel/impulse response. The 

output of an LSI system is the convolution of the input with its kernel.
○ We need to make some assumptions about the input signal in order to carry out convolutions 

with finite dimensional signals. We think about the assumptions we make as defining the 
“boundary conditions.”

● LSI’s are a subset of linear systems with a special additional structure
○ Intuitively this additional structure can be useful when the output of the system is meant to 

“represent,” the input. Also, this structure naturally occurs in many settings (think time shift 
invariance for measurements).

● Besides everything discussed here, convolution has a deep connection to the 
Fourier transform, called the ‘convolution theorem,’ that is very powerful. 


