
Lab 10: Classification 
Regularization, and Clustering

Math Tools for Neuroscience,  2020



Road Map
● Classification

○ Prototype, FLD, and QDA as solutions to nested special cases of expectation maximization
○ Coding Exercises: Using the contour drawing method of computing the boundaries for data 

generated in the nested special case fashion to demonstrate the above 

● Regularization 
○ L1 and L2 Regularization as enforcing different priors
○ Coding Exercise: L1 and L2 regularized polynomial regression for various values of lambda 

(and sigma)

● Clustering
○ The k-means algorithm
○ Expectation maximizations
○ Running the Hard K-means 



Classification 1: The Prototype Classifier
● Assume that samples from both classes come from normal distribution come from 

normal distributions with covariance matrix = lambda * Identity, and that the only the 
difference between them comes from the difference between the class means. 

● Under this assumption, the likelihood that a sample at a given point came from either 
class is proportional to the euclidean distance of said point  is from each mean. 
○ Thus the “decision boundary,” or the set of points for which membership to each 

class is equally likely is simply the set of points that is equidistant from the two 
centers. 
■ HW 6 Q2: Use this intuition to calculate the decision boundary in closed form!



Classification 1: The Prototype Classifier

Figure Credit: Ionatan Kuperwajs



Classification 2: The Fisher Linear Discriminant
● Assume that samples from both classes come from normal distribution come from 

normal distributions with the same (arbitrary/elliptical) covariance matrix. 
● It turns out this restriction is also sufficient to derive a closed form solution for the 

decision boundary as well! (Appropriately the decision boundary is still linear)
○ HW 6 Q2b: prove the above + find a closed form solution for the decision boundary

■ HINT: Can you think of some transformed domain in which this problem may 
be easier to solve? If so you can solve in this “nice,” domain, then transform 
back into the original data domain after solving.



Classification 2: Fisher’s Linear Discriminant

Figure Credit: Ionatan Kuperwajs



Classification 3: Quadratic Discriminant Analysis
● Assume that samples from both classes come from normal distribution come from 

normal distributions AND NOTHING ELSE.
● This problem does not yield itself to simple closed form analysis, but the same principles 

still apply: points are assigned to clusters that maximize their likelihood, and the 
boundary is the set of points where the likelihoods are equal. 
○ Appropriately, the decision boundaries in this general case are quadratic forms (as 

opposed to lines/planes).



Classification 2: Fisher’s Linear Discriminant

Figure Credit: Ionatan Kuperwajs



Coding Section 1: The prototype and LDA as special 
cases of QDA



Coding Section 1 Takeaways
● The advantage of using simpler models, that may be less powerful in general, 

is that they may extrapolate better, and that they require  comparatively less 
data to become accurate .  



Regularization: Ridge Regression
Regularization Perspective: 

Maximum A Posteriori Perspective:

Gaussian Likelihood Gaussian Prior 

Minimum of negative log of posterior 
<==> Maximum of Posterior



Regularization: LASSO 
Regularization Perspective: 

Maximum A Posteriori Perspective:

Gaussian Likelihood Laplacian Prior 

Minimum of negative log of posterior 
<==> Maximum of Posterior



Coding Section 2: Lasso and Ridge regression



Coding Section 2: Takeaways
● Each regularization has pro’s and con’s that make one or the other preferable in various settings (often 

this depends on the “true,” distribution of the parameters). 
● Lasso may offer something in the way of “interpretability,”

VS



Clustering: Hard K-means
● Thus far we have been using known examples in order to develop a strategy 

for how to optimally predict future examples (to extrapolate), by making some 
assumptions about the underlying processes generating the data.

● What happens if, say in the classification context from the first part of this lab, 
we are not told which class each data point belongs to (or even how many 
classes are present)?



Clustering: Hard K-means
clusters_stable = False;
centers = random(d, k); % initialize k cluster centroids to random points in d-dimensional space

% initialize each data point’s cluster as the nearest centroid
for data_point in data_set: 

cluster_ids(data_point) = argmin_k {||data_point - center_k||^2}

while{! Clusters_stable}
old_ids = cluser_id;
% new cluster centroids are mean of each cluster
for each cluster indexed by k:

centers(k) =  mean(data_set(cluster_id==k))

% re-assign each data point to possibly new nearest centroid
for data_point in data_set: 

cluster_ids(data_point) = argmin_k {||data_point - center_k||^2}

% Check for convergence 
Clusters_stable = (old_ids - cluster_ids) == 0



Clustering: Extensions
● Thinking alllll the way back to the prototype classifier, recall that if we assume 

each cluster is comprised of samples from normal distributions with (some 
multiple of) identity covariance then the distance from each point to each 
center is directly proportional the likelihood that point belongs to that cluster!

○ Modifying the algorithm presented previously can yield a more generalized “Expectation 
Maximization,” clustering algorithm, in analogy to extending from the prototype to QDA 
classifiers. 

● One immediate issue: how to set the hyperparameter k? As with lambda in 
the classification case best practice is to use cross validation to decide 
between models. 


