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Fall semester, 2020

Section 3:
Linear Shift-Invariant Systems

Linear shift-invariant (LSI) systems

® [inearity (previously discussed):

“linear combination in, linear combination out”

® Shift-invariance (new property):

“shifted vector in, shifted vector out”

® These two properties are independent (think of
some examples that have both, one, or neither)

LSI system

As before, express input as a sum of
“impulses”, weighted by elements of X~




LSI system
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« Linearity => response to X is sum of
responses to impulses, weighted by
elements of X~

« Shift-invariance => responses to
impulses are shifted copies of each other
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LSI systems are characterized by their “impulse response”
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Convolution
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e Sliding dot product
® Structured matrix
® Boundaries? zero-padding, reflection, circular
e Examples: impulse, delay, average, difference

Feedback LSI system

| H * Response depends on input, and
\ l previous outputs
/f'vc? e Infinite impulse response (IIR)
* Recursive => possibly unstable
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y(n) => fln—k)z(k)+ Y gln—k)y(k)
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(For this class, we’ll stick to feedforward (FIR) systems)
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[figure c/o Castleman]




“separable” filter
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® Quter product
e Simple design/implementation
e Efficient computation

[figure: Adelson & Bergen 85]

Discrete Sinusoids

example : k =2
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More generally: fCOS(wn ) ) LLMLL LQMLL
“amplitude” 2% 10 20 %

“phase” (radians)

Shifting Sinusoids
Acos(wn — ¢) = Acos(¢) cos(wn) + Asin(¢) sin(wn)
... via a well-known trigonometric identity:

cos(a — b) = cos(a) cos(b) + sin(a) sin(b)

We’ll also need conversions between polar
and rectangular coordinates:

x = Acos(¢), y= Asin(¢)

A= VTP, 6= tan(y/a)




Shifting Sinusoids

Acos(wn — ¢) = Acos(¢) cos(wn) + Asin(¢) sin(wn)

fixed cos/sin vectors:

scale factors:

1T , Billic , il
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Any scaled and shifted sinusoidal vector can be written
as a weighted sum of two fixed {sin, cos} vectors!

Shifting Sinusoids

Acos(wn — ¢) = Acos(¢) cos(wn) + Asin(¢)sin(wn)

fixed cos/sin vectors:

A=16, ¢=211/12 1TT
Ie
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Any scaled and shifted sinusoidal vector can be written
as a weighted sum of two fixed {sin, cos} vectors!

Shifting Sinusoids

Acos(wn — ¢) = Acos(¢) cos(wn) + Asin(¢)sin(wn)

fixed cos/sin vectors:

A=16, ¢=216/12 1TT
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Any scaled and shifted sinusoidal vector can be written
as a weighted sum of two fixed {sin, cos} vectors!




LSI response to sinusoids

z(n) = cos(wn) (input)

y(?’b) = z r(m) COSs (w(n — TTL)) (convolution formula)

LSI response to sinusoids

z(n) = cos(wn)

y(n) = ) cos (

COS wn

\ /

(trig identity)

SlIl wn

inner product of impulse response with cos/sin, respectively

A = L — DY

LSI response to sinusoids

z(n) = cos(wn)

y(n)

= COS wn

COS
-COS wn ’Sln wn

sm wn




LSI response to sinusoids

z(n) = cos(wn)

y(n) = 3 r(m)cos (w(n —m))

= Z r(m) cos(wm) cos(wn) + Z r(m) sin(wm) sin(wn)

= cr(w) cos(wn) + sr(w) sin(wn)

Ay (w) cos(¢r(w))cos(wn) + (A, (w) sin(é, (w))pin(wn)

(rectangular -> polar coordinates)

sr(w)

LSI response to sinusoids

z(n) = cos(wn)

y(n) = 3 r(m)cos (w(n—m)

m

Z r(m) cos(wm) cos(wn) + Z r(m) sin(wm) sin(wn)

m m

= cr(w) cos(wn) + sr(w) sin(wn)

Ay (w) cos(pr(w)) cos(wn) + A, (w)sin(ér(w)) sin(wn)

= Ar (OJ) cos(wn — (;5,,. (w)) (trig identity, in the opposite direction)

0r(w)
AN NS —| L |— Ar(w>]
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“Sinusoid in, sinusoid out” (with modified amplitude & phase)

LSI response to sinusoids

More generally, if input has amplitude A, and phase ¢, ,
x(n) = Ay cos(wn — ¢g)

then linearity and shift-invariance tell us that

o) cos(am

amplitudes multiply phases add
br(w)

SAAF —| L= ] TAAHS

“Sinusoid in, sinusoid out” (with modified amplitude & phase)




The Discrete Fourier transform (DFT)

® Construct an orthogonal matrix of sin/cos pairs,
covering different numbers of cycles

® Frequency multiples of 27/N radians/sample,
(specifically, 27k/N, for k=0,1,2,...N/2)

® For k=0 and k = N/2, only need the cosine part
(thus, N/2+1 cosines,and N/2 — 1 sines)

® When we apply this matrix to an input vector, think
of output as paired coordinates

® Common to plot these pairs as amplitude/phase

[details on board...]

Fourier Transform matrix

k=0 k=1 k=2 k=3 k=N/2

2
;o ...
2

2rk . 2k
cos | —n sin Tﬂ (plotted sinusoids are continuous, N=32)

The Fourier family

signal domain

continuous discrete
continuous | Fourier transform | discrete-time Fourier transform

discrete Fourier series discrete Fourier transform I

frequency
domain

(we are here)

The “fast Fourier transform” (FFT) is a computationally efficient
implementation of the DFT, requiring Nlog(N) operations,
compared to the N2 operations that would be needed for matrix

multiplication.




Reminder: LSI response to sinusoids
z(n) = cos(wn)
y(n) = Y r(m)cos(w(n —m))

os(wn) in(wn)

= cr(w) cos(wn) + $r(w) sin(wn)

Ay (w) cos(¢pr(w)) cos(wn) + A, (w)sin(ér(w)) sin(wn)
Ay (w) cos(wn — ¢, (w))

These dot products are the Discrete Fourier Transform
of the impulse response, r(m)!

Fourier & LSI
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Fourier & LSI

note: only 3 (of many) frequency components shown




Fourier & LSI
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note: only 3 (of many) frequency components shown

Fourier & LSI
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LSI systems are characterized by their frequency response,
specified by the Fourier Transform of their impulse response

Complex exponentials:
“bundling” sine and cosine

e = cos(f) + isin(h) (Euler’s formula)

Ae™ = Acos(wn) + iAsin(wn)

real part:

imaginary part:

s

[on board: reminders o ltiplication of complex numbers]




Complex exponentials:
“bundling” sine and cosine

eiwn L AT(UJ) ei(wn—zbr(w)) _ AT(UJ) e—idar(w) eium
— eiwn

F.T. of impulse response!

Complex exponentials:
“bundling” sine and cosine

eiwn L AT(UJ) eilwn—or(w))

Ar (w) e—idar(w) eium

F.T. of impulse response!

Note: the complex exponentials are eigenvectors!

The “convolution theorem”

T e—

convolve with 77




The “convolution theorem”

—

Y
convolve with 7
pointwise multiply by 7°
Yy

WIOJSUBI], IOLINO]
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Fourier Transform
= — 8y

—

The “convolution theorem”

T e

convolve with 7°

Fourier Transform
WIOJSURI], JOLINO,]
JSIJAUTL

pointwise multiply by 7°

§=L#=FRF'z% = FTy=RF"%
K (diagonal matrix)

Recap...
® Linear system
- defined by superposition

- characterized by a matrix

® Linear Shift-Invariant (LSI) system
- defined by superposition and shift-invariance
- characterized by a vector, which can be either:
» the impulse response

» the frequency response (amplitude and phase).
Specifically, the Fourier Transform of the impulse
response specifies an amplitude multiplier and a
phase shift for each freauencv.




Discrete Fourier transform
(with complex numbers)

N—-1

- i 21k
L = E rpe” T where wp = —
N
n=0
N-1
1 =~ Wrn .
Tn = = E Tk € (inverse)
N k=0

[on board: why minus sign? why 1/N?]

Visualizing the (Discrete)
Fourier Transform

® Two conventional choices for frequency axis:

= Plot frequencies from k=0 to k=N/2

(in matlab: 1 to N/2-1)

= Plot frequencies from k=-N/2 to N/2-1

(in matlab: use fftshift)

® Typically, plot amplitude (and possibly phase,
on a separate graph), instead of the real/
imaginary (cosine/sine) components

Some examples

® constant

® sinusoid (see next slide)

® impulse

® Gaussian - “lowpass”

® DoG (difference of 2 Gaussians) - “bandpass”

® Gabor (Gaussian windowed sinusoid) - “bandpass”

[on board]




e™™ = cos(wn) + isin(wn) e~ = cos(wn) — isin(wn)

1 _
cos(wn) = 5(eWn )

-1, ; i
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sin(wn) =

Example for k=2, N=32 (note indexing and amplitudes):

b i = fft(7) fitshift(z)
SO [ = I
ALLUH %Lui‘g 10| (real part) 10|
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What do we do with
Fourier Transforms?

* Represent/analyze periodic signals

* Analyze/design LSI systems. In particular, how do
you identify the nullspace?

Retinal ganglion cells (1D)

Surround
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Spatial frequency (cycles per degree)

Enroth-Cugell and Robson (1984)




Sampling causes “aliasing”
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Sampling process is linear, but many-to-one (non-invertible)

o

“Aliasing” - one frequency masquerades as another jon board]

Given the samples, it is common/natural to assume, or enforce,
that they arose from the lowest compatible frequency...

Effect of sampling on the Fourier Transform:
Sum of shifted copies
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Real-world
aliasing

downsample by 2

\ “Moiré pattern”




Pre-filtering to avoid spectral overlap (“aliasing”)

X (w) —[ L(w) ]—P/%—» X (w)
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lowpass filter,
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Real-world
aliasing

downsample by 2,

'\with pre-filtering




