
PSYCH-GA.2211/NEURL-GA.2201 – Fall 2019
Mathematical Tools for Neural and Cognitive Science

Homework 2

Due: 10 Oct 2019
(late homeworks penalized 10% per day)

See the course web site for submission details. Reminder: rather than using the functions pinv()
and norm(), use the linear algebra tools we learned in class. Please: don’t wait until the day before
the due date... start now!

1. Trichromacy. Load the file colMatch.mat in your MATLAB environment. This file con-
tains matrices and vectors related to the color matching experiment presented in class. In
particular, the variable P is an N × 3 matrix containing wavelength spectra for three “pri-
mary” lights, that could be used in a color-matching experiment. For these problems
N = 31, corresponding to samples of the visible wavelength spectrum from 400nm to 700nm
in increments of 10nm.

The function humanColorMatcher.p simulates a normal human observer in a color match-
ing experiment. The input variable light should contain the wavelength spectrum of a test
light (a 31-dimensional column vector). The variable primaries should contain the wave-
length spectra of a set of primary lights (typically, a 31× 3 matrix, as for matrix P described
above). The function returns a 3-vector containing the observer’s “knob settings” - the in-
tensities of each of the primaries that, when mixed together, appear identical to the test
light. The function can also be called with more than one test light (by passing a matrix
whose columns contain 31-dimensional test lights), in which case it returns a matrix whose
columns are the knob settings corresponding to each test light.

(a) Create a test light with an arbitrary wavelength spectrum, by generating a random col-
umn vector with 31 positive components (use rand). Use humanColorMatcher to
“run an experiment”, asking the “human” to set the intensities of the three primaries in
P to match the appearance of the test light. Compute the 31-dimensional wavelength
spectrum of this combination of primaries, plot it together with the original light spec-
trum, and explain why the two spectra are so different, even though they appear the
same to the human.

(b) Now characterize the human observer as a linear system that maps 31-dimensional
lights to 3-dimensional knob settings. Specifially, run a set of experiments to estimate
the contents of a 3× 31 color-matching matrix M that can predict the human responses.
Verify on a few random test lights that this matrix exactly predicts the responses of the
function humanColorMatcher.

(c) The variable Cones contains (in the rows) approximate spectral sensitivities of the
three color photoreceptors (cones) in the human eye: Cones(1,:) is for the L (long-
wavelength, or red) cones, Cones(2,:) the M (green) cones, and Cones(3,:) the
S (blue) cones. Applying the matrix Cones to any light ~l yields a 3-vector containing
the average number of photons absorbed by that cone (try plot(Cones’) to visualize
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them!). Verify that the cones provide a physiological explanation for the matching ex-
periment, in that the cone absorptions are equal for any pair of lights that are perceptu-
ally matched. First, do this informally, by checking that randomly generated lights and
their corresponding 3-primary matching lights produce equal cone absorptions. Then,
provide a few lines of matlab code that provide a more mathematical demonstration,
along with an extended comment explaining your reasoning using concepts from linear
algebra. [Hints for two possible approaches: (1) write math/code that computes cone
responses for any test light and then computes the weighted combination of primaries
that would produce the same cone responses - show that this is numerically the same
as the color-matching matrix; (2) convince yourself, and explain why, it is sufficient to
show that M and Cones have the same nullspace. Then use SVD to demonstrate that
this is true!]

(d) The function altHumanColorMatcher(light,primaries) simulates a color-deficient
human observer in a standard color matching experiment. (i) for a random test light,
compare the knob settings for this observer with those of the normal human. Do this for
several runs of altHumanColorMatcher(light,primaries). How do they differ?
(ii) Compute cone absorptions for the test light, and for the mixture of three matching
primaries (by applying the Conesmatrix). Do this for both the normal human observer,
and for multiple runs of the abnormal observer. Try this for several different test lights.
How do the cone responses of the normal and abnormal observers differ? Can you offer
a diagnosis of the underlying cause of color deficiency in the abnormal observer?

2. Polynomial regression. Load the file regress1.mat into your MATLAB environment.
Plot variable Y as a function of X . Find a least-squares fit of the data with polynomials of
order 0 (a constant), 1 (a line, parameterized by intercept and and slope), 2, 3, 4, and 5. [Com-
pute this using svd and basic linear algebra manipulations that you’ve learned in class!] On
a separate graph, plot the squared error as a function of the order of the polynomial. Which
fit do you think is “best”? Explain.

3. Constrained Least Squares Optimization. Load the file constrainedLS.mat into MAT-
LAB. This contains an N × 2 data matrix, data, whose columns correspond to horizontal
and vertical coordinates of a set of 2D data points, ~dn. It also contains a 2-vector w. Consider
a constrained optimization problem:

min
~v

∑
n

(
~vT ~dn

)2
, s.t. ~vT ~w = 1.

Thus, the constraint on ~v is that it must lie on a line, perpendicular to ~w, whose perpendicular
distance from the origin is 1/||~w||.

(a) Rewrite the optimization problem in matrix form. Then rewrite the problem in terms
of a new optimization variable, ṽ (a linear transformation of ~v), such that the quantity
to be minimized is now ||ṽ||2. Note: you must also rewrite the constraint in terms of ṽ.

(b) The transformed problem is one that you should be able to solve. In particular, you
must find the shortest vector ṽ that lies on the constraint line. Compute the solution for
ṽ, and plot the solution vector, the constraint line and the transformed data points.

(c) Transform the solution back into the original space (i.e., solve for ~v). Plot ~v, the original
constraint line, and the original data points. Is the optimal vector ~v perpendicular to
the constraint line? On the same graph, plot the total least squares solution (i.e., the
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vector that minimizes the same objective function, but that is constrained to be a unit
vector). Are the two solutions the same?

4. Dimensionality reduction with PCA. Professors Hugh Bell and Wee Zell were recording
extracellular action potentials (i.e. spikes) from cat primary visual cortex late one evening
when their computer malfunctioned. It had already isolated a set of 400 time windows in
which voltages had crossed a threshold, indicating the presence of spike. But these traces
likely arose from multiple cells, with each cell producing a characteristic waveform, and the
computer failed before sorting the voltage traces to determine how many cells were present,
and which spikes arose from each cell. The professors come to you (the only math-tools-
enabled graduate student still in the building at that hour), asking for help. They provide
you with a file windowedSpikes.mat containing a 400 × 150 matrix, data, whose rows
contain the electrode measurements (voltages recorded for each 150 msec window, at 1msec
intervals). Your task is to determine how many neurons produced these 400 spikes.

(a) Plot the 400 waveforms superimposed and describe what you see. Be sure to label your
axes! Using these spike waveform plots, can you devise a way to deduce how many
neurons produced these spikes? Feel free to include an additional plot containing just
a subset of the waveforms in order to aid in your explanation.

(b) Perform principal components analysis (PCA) on your data, and plot the eigenvalues
in descending order (alternatively, compute the SVD of data). It might help to display
the eigenvalues on a log-scale. Interpret what you see.

(c) Project each of the 400 spike waveforms onto the top two principal components of the
dataset, and plot the resulting values as points in 2 dimensions. Describe what you see.
Can you deduce how many distinct neurons produced the 400 voltage traces?

(d) Now project each waveform onto the top three principal axes, and plot in 3 dimensions
(you may want to spin it around, using rotate3d in matlab). Are there any significant
changes you see? Using the 3D plot, can you inform Drs. Bell and Zell how many
neurons they likely recorded from?

(e) Extra credit: how would you determine which neuron fired each of the 400 observed
spikes? Describe your strategy, including appropriate linear algebraic expressions for
the required calculations.


