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Section 6:

Model fitting:
comparison, selection and regularization

Optimization...

Heuristics,
exhaustive search,
(pain & suffering)

Iterative descent,
possibly non-unique
(local minima)
Quadratic
Iterative descent,

unique

Closed-form,
and unique
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Taxonomy of model-fitting errors

® Unexplainable variability (due to finite/noisy
measurements)

e Overfitting (too many params, not enough data)
® Optimization failures (e.g., local minima)

® Bad model

Model Comparison

« If models are optimized to fit data according to some
objective, it is natural to compare them based on the value of
that objective.

- for least squares estimates, we can compare the residual
squared error of two regression models (with different
regressors).

- for ML estimates, common to compute the likelihood (or
log likelihood) ratio, and compare to 1 (or zero).

- for MAP estimates, common to compute the posterior
ratio (a.k.a. the Bayes factor)

* Problem: evaluating the objective with the same data used to
optimize the model leads to over-fitting! We really want to
predict error on non-training data...

Comparing models’ predictive performance

Option 1: Include a penalty for number of parameters:
given the ML estimate: 6 = arg min p( F| 0)
0
a. Compare Akaike information criterion (AIC) [Akaike, 1974]
Exc(d.0) =2 dim@ - 21n (p(d10))
b. Compare Bayesian information criterion (BIC) [Schwartz, 1978]
Egi(d,0) = dim(@) In (dim( &) -21n (p(cﬂ é))
valid when dim(?) >> dim(é)

Option 2: Cross-validation: partition data into two subsets, fit
parameters to “training” subset, evaluate objective on “test”
subset.



Cross-validation Ridge regression

A resampling method for estimating predictive error of a model. (a.k.a. Tikhonov regularization)

Widely used to identify/avoid over-fitting, and to provide a fair

comparison of models. Ordinary least squares regression:
Using cross-validation to select the
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The “Relaxed LASSO” Clustering

To reduce bias, re-solve for non-
zero coefficients after eliminating
unused regressors

* K-Means (Lloyd, 1957)

* “Soft-assignment” version of K-means

“ (a form of Expectation-Maximization - EM)

“relaxed LASSO” |
|

* In general, alternate between:

LASSO 1) Estimating cluster assignments
2) Estimating cluster parameters
7, * Coordinate descent: converges to (possibly local) minimum
* Need to choose K (number of clusters) - cross-validation!
K-Means algorithm - alternate between two steps: K-means example
« Estimating cluster assignments: given class centers, Here X; € R?, n =300, and K = 3

assign each point to closest one.

Iniial centers Heration 1 eration 2

Soap bubbles:

+ Estimating cluster parameters: given assignments, re-
estimate the centroid of each cluster.

[from R. Tibshirani, 2013]

K-means failures

Warning: Initialization matters (due to local minima) ... Non-convex/non-round-shaped clusters
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[from R. Tibshirani, 2013] Picture courtesy: Christof Monz (Queen Mary, Univ. of London)



ML for discrete mixture of Gaussians: soft K-means

P(@alanks ks A) o< 3 _Onk_ o~ (@a—ii) AL (@0 —fin) /2

r V |Ak|

Ank = assignment probability

{fix, Ak} =mean/covariance of class n

Intuition: alternate between maximizing these two sets of variables
(“coordinate descent™)

Essentially, a version of K-means with “soft” (i.e., continuous, as
opposed to binary) assignments!

Application to neural “spike sorting”

Standard solution:

1. Threshold to find segments containing spikes
2. Reduce dimensionality of segments using PCA

3. Identify spikes using clustering (e.g., K-means)

Note: Fails for overlapping spikes!

Simulated data [Quiroga et. al. 2004]
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Different cluster analysis results on "mouse" data set:
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[wikipedia]

Failures of clustering for near-synchronous spikes

synchronous spiking

e

PC 1 PC1

[Ekanadham et al, 2014]

PC 1 projection

[Pillow et. al. 2013]
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