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Section 5:
Statistical Inference and Model Fitting

The sample average

1
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What happens as N grows?

e Variance of Z is ¢2/N (the “standard error of the mean”,
or SEM), and so converges to zero [on board]

® “Unbiased”: Z converges to the true mean, p, = E(x)
(formally, the “law of large numbers”) [on board]

® The distribution p(Z) converges to a Gaussian (mean [ty
and variance 2 /N): formally, the “Central Limit Theorem”

700 samples true density
Measurement
(sampling)
N—__ 7
Inference
sample mean: [-0.05 0.83] true mean: [0 0.8]
sample cov: [0.95 -0.23 true cov: [1.0 -0.25

-0.23 0.29] -0.250.3]




Central limit for a uniform distribution...

10k samples, uniform density (sigma=1) (w1 +u2)/V2

(u1 + ug + ug + u1)/\/1

Central limit for a binary distribution...
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Classical “frequentist” statistical tests

Discrete,
Type of data? “categorical Any counts <57

No. Yes

{Parametric assumptions:

L

Do you have dependent &
independent variables?

Differences
between what?

Multple means,
Single variable
Gorrelation

analysis

Nonparametric

’ . t [Spearman's rank

correlation
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’ Transtorm data? ]._N satisfied?
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Statistical Rethinking, Richard McElreath




Classical/frequentist approach - z

. The 1Q distributi
* In the general population, @ R astribaton

1Q is known to be
distributed normally with

e u=100, =15

* We give a drug to 30
people and test their IQ

* Hi: NZT improves 1Q

* Ho (“null”): it does nothing

Probability

55 70 85 100 115 130 145
1Q score

The z-test

The IQ distribution

o =100 (Population mean)

* ¢ =15 (Population standard deviation)

* N =30 (Sample contains scores from
30 participants)

* X =108.3 (Sample mean)

o z= (Xx—w)/SE =(108.3-100)/SE
(Standardized score)

« SE=¢/N=15130=2.74

* Error bar/CI: +2 SE

*+ z=8.3/2.74=3.03

« p=0.0012

55 70 85 100 115 130 145 o Sjgnificant?
1Q score

Probability

* One- vs. two-tailed test

What if the measured effect of NZT had been
half that?

* 1 =100 (Population mean)

* o =15 (Population standard
deviation)

The IQ distribution

* N=30 (Sample contains scores from
30 participants)

* x=104.2 (Sample mean)

o z= (X —w)/SE = (104.2-100)/SE

« SE=0/VN=1530=2.74

e z=42/274=1.53

* p=0.061

 Significant?

Probability

55 70 85 100 115 130 145
1Q score




Significance levels

* Are denoted by the Greek letter a.

* In principle, we can pick anything that we
consider unlikely.

* In practice, the consensus is that a level of 0.05 or

1 in 20 is considered as unlikely enough to reject
Ho and accept the alternative.

* Alevel 0f 0.01 or 1 in 100 is considered “highly
significant” or “really unlikely”.

Does NZT improve IQ scores or not?

Reality
Yes No
Type I error
% é Correct o-error
E’ False alarm
£ Type Il error
5z [p-error Correct
Miss

Test statistic

» We calculate how far the observed value of the
sample average is away from its expected value.

* In units of standard error.
* In this case, the test statistic is

Z_)?—,u_ X—u
SE o /N

» Compare to a distribution, in this case z or N(0,1)




Common misconceptions

Is “Statistically significant” a synonym for:
* Substantial

* Important

* Big

* Real

Does statistical significance gives the

* probability that the null hypothesis is true

* probability that the null hypothesis is false

* probability that the alternative hypothesis is true
* probability that the alternative hypothesis is false

Meaning of p-value. Meaning of CI.

Student’s 7-test

* ¢ not assumed known

P Use th(xi_f)z

SZ — =l
N-1
« Why N-1? s is unbiased (unlike ML version), i.e., E(s’)=0"

* Test statistic is t= XKy
s/NN

» Compare to ¢ distribution for CIs and NHST
* “Degrees of freedom” reduced by 1 to N-1

The ¢ distribution approaches the normal
distribution for large N

n=1

Probability




The z-test for binomial data

Is the coin fair?

Lean on central limit theorem

Sample is n heads out of m tosses

Sample mean: p=n/m

Ho:p=0.5

Binomial variability (one toss): o= \/E , Wwhereg=1-p
Test statistic: - D= D,

_,/poqo/m

Compare to z (standard normal)

For CI, use —
tz, PG/ m

Many varieties of frequentist univariate
tests

x° goodness of fit

X" test of independence

test a variance using %~

F to compare variances (as a ratio)
Nonparametric tests (e.g., sign, rank-order, etc.)
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Estimation, more generally...

¢ An “estimator” is a function of the data, intended to
provide an estimate of the “true” value of a parameter

* Traditionally, one evaluates estimator quality in terms of
mean error (“bias”) and variance
(note: MSE = bias”2 + variance)

* Classical statistics generally aims for an unbiased
estimator, with minimal variance (“MVUE”)

* Modern view: trade off the bias and variance, through
model selection, “regularization”, or Bayesian priors

The maximum likelihood estimator (MLE)

Sample average is appropriate when one has direct
measurements of the thing being estimated. But one may want
to estimate something (e.g., a model parameter) that is
indirectly related to the measurements...

Natural choice: assuming a probability model p(X|6)
find the value of @ that maximizes this “likelihood” function

(@) = argmax [ (7 10) w2 E N

p(X10)

= 1 a’" 0
argmgxzn: ogp(Tnl0) e s

Example: Estimate the bias
(probability of heads) of a coin flip




Likelihood: 1 head observed

0l6)

p(H=1T

Likelihood: 1 tail observed

Likelihoods, p(H,T|0)
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Convergence

Running Proportion of Heads
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Example ML Estimators - discrete

Binomial: P(H|N79)=( Z JGH(l_e)NH

N2 ke (k’s are measured
e
Poisson: p({kn} \ /l) = H P event counts,

n=1 n* lambda is mean)

Example ML Estimators - Continuous
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e 202

Gaussian:  p ({z,, }|p, 0) =

1
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N
an 2(& - ﬂ) (Note: this
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Uniform:  p ({z,}|0) = {0 ==

0 otherwise

0 = arg max{z,}




Properties of the MLE

* In general, the MLE is asymptotically unbiased, and
Gaussian, but note can only rely on this if:

- the likelihood model is correct
- the MLE can be computed

- you have lots of data

* Confidence:
* SEM (relevant for direct estimates of mean)
« inverse of second deriv of NLL (multi-D: “Hessian”)
« simulation (resample from p(z|0))
* bootstrapping (re-sample from the data, with replacement)

Bootstrapping

* “The Baron had fallen to the bottom of a deep lake.
Just when it looked like all was lost, he thought to
pick himself up by his own bootstraps”

[Adventures of Baron von Munchausen, by Rudolph Erich Raspe]

* A (re)sampling method for computing estimator
distribution (incl. stdev error bars or confidence
intervals)

* Idea: instead of looking at distribution of estimates
across repeated experiments, look across repeated
resampling (with replacement) from the existing
data (“bootstrapped” data sets)

HEART ATTACK RISK | [New York Times, 27 Jan 1987]

FOUND T0 BE CUT
BY TAKING ASP]R[N Histogram of bootstrap estimates:
LIFESAVING EFFECTS SEEN 1o ]

Boostrapped|
1200 — Original

Study Finds Benefit of Tablet
Every Other Day Is Much 1000
Greater Than Expected 800

The summary statistics in the newspaper article are very simple:

heart attacks subjects 400
(fatal plus non-fatal) 200
aspirin group: 104 11037
lacebo group: 189 11034
B roup 82 0.4 06 0.8 1
~  104/11037 .
foWUBT_ @y =>with 95% confidence,
189/11034
If this study can be believed, and its solid design makes it very
believable, the aspirin-takers only have 55% as many heart attacks 043 <60 <0.7

as placebo-takers.
Of course we are not really interested in 6, the estimated ratio.
What we would like to know is ¢, the true ratio

[Efron & Tibshirani *98]




strokes  subjects

aspirin group: 119 11037
placebo group: 98 11034 (1.3)
For strokes, the ratio of rates is
~ 119/11037
6= SR/ 1.21. (1.4)

It now looks like taking aspirin is actually harmful. However the
interval for the true stroke ratio 6 turns out to be

93 <8 <1.59 (1.5)

with 95% confidence. This includes the neutral value § = 1, at
which aspirin would be no better or worse than placebo vis-a-vis
strokes. In the language of statistical hypothesis testing, aspirin
was found to be significantly beneficial for preventing heart attacks,
but not significantly harmful for causing strokes.

[Efron & Tibshirani 98]

Bayesian Inference

“Likelihood” “Prior”

“Post<ic:r” \ /
_ p(data [6) p(6)
p(0|data) = (data)
N

Normalization factor

Example: Posterior for coin

infer whether a coin is fair by flipping it repeatedly
here,  is the probability of heads (50% is fair)
1..n are the outcomes of flips

Consider three different priors:
suspect fair suspect biased no idea
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P(X)
p(x)
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prior fair

prior biased

prior uncertain
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Posteriors after observing 75 heads, 25 tails
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—prior differences are ultimately overwhelmed by data

Bayesian confidence intervals

PDFs
2H/1T 10H /5T 20H /10T
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MAP estimation - Gaussian case

For measurements with Gaussian noise, and
assuming a Gaussian prior, posterior is Gaussian.

® MAP estimate is a weighted average of prior
mean and measurement

® posterior is Gaussian, allowing sequential
updating

e cxplains “regression to the mean”, as
shrinkage toward the prior




MAP with Gaussians

y=x+n, x~N(iz,0:), n~N(0,0,)

Completing the square shows that this

posterior is also Gaussian, with
1 1 1

o2 o2 o2
o oz o2

(Y He 1.1
"= (o%+a§)/<«f%+a£>

The average of y and p+, weighted by
inverse variances (a.k.a. “precisions”)!

Two noisy measurements of the same variable: ;.\
= xz~ N(0,0
y1=x+m (0,04) I )
Yo =T + Na ng ~ N(0, 0y, ), independent

Joint measurement distribution:  § ~ N (0, 0% 4 ¢21)

LS Regression: 3
A« . 9
B = argmin [|y> — By
_ o
o2+ 02 0

]E(y2|y1) _ B " Least-squares

regression

“regression )
to the mean” TLS regression

(largest eigenvector) 3 ‘ 0 3

Regression to the mean

“Depressed children treated with an energy drink improve
significantly over a three-month period. I made up this
newspaper headline, but the fact it reports is true: if you
treated a group of depressed children for some time with an
energy drink, they would show a clinically significant
improvement....”

“It is also the case that depressed children who spend some
time standing on their head or hug a cat for twenty minutes

a day will also show improvement.”

- D. Kahneman




Hierarchy of statistically-motivated estimators

—

¢ Maximum likelihood (ML): #(d) = arg max p(d|z)

- =

¢ Maximum a posteriori (MAP): %(d) = arg max p(z|d)
(requires prior, p(x)) ‘
* Bayes estimator (general): #(d) = argmin E (L(x, 2) ‘ J)
(requires loss, L(z,)) ‘
* Bayes least squares (BLS):  ( 3 =argminE <(:z: —1)? ‘ cf)
(special case) T
=2 (<)




