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Section 4:
Summary Statistics & Probability

Statistics is the science of learning from experience, especially ex-
perience that arrives a little bit at a time. The earliest information
science was statistics, originating in about 1650. This century has
seen statistical techniques become the analytic methods of choice
in biomedical science, psychology, education, economics, communi-
cations theory, sociology, genetic studies, epidemiology, and other
areas. Recently, traditional sciences like geology, physics, and as-
tronomy have begun to make increasing use of statistical methods
as they focus on areas that demand informational efficiency, such as
the study of rare and exotic particles or extremely distant galaxies.

Most people are not natural-born statisticians. Left to our own
devices we are not very good at picking out patterns from a sea
of noisy data. To put it another way, we are all too good at pick-
ing out non-existent patterns that happen to suit our purposes.
Statistical theory attacks the problem from both ends. It provides
optimal methods for finding a real signal in a noisy background,
and also provides strict checks against the overinterpretation of
random patterns.

[Efron & Tibshirani, 1998]

Historical context

1600’s: Early notions of data summary/averaging

* 1700’s: Bayesian prob/statistics (Bayes, Laplace)

1920’s: Frequentist statistics for science (e.g., Fisher)

1940’s: Statistical signal analysis and communication,
estimation/decision theory (e.g., Shannon, Wiener, etc)

¢ 1950’s: Return of Bayesian statistics (e.g., Jeffreys, Wald,
Savage, Jaynes...)

* 1970’s: Computation, optimization, simulation (e.g,. Tukey)

¢ 1990’s: Machine learning (large-scale computing +
statistical inference + lots of data)

e Also, since 1950°s: statistical neural/cognitive models!




Statistics as summary

0.1, 45, -23, 08, -1.1, 3.2, ...

“The purpose of statistics is to replace a quantity of data
by relatively few quantities which shall ... contain as much

as possible, ideally the whole, of the relevant information
contained in the original data”

- R.A. Fisher, 1934

Descriptive statistics

Data “Dispersion”

A

“Central tendency”

Descriptive statistics: Central tendency

* We often summarize data with averages. Why?

e Average minimizes the squared error (as in regression!):
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* p=1 :median, My n=1

* p— 0 :mode (location of maximum)

* p — oo : midpoint of range

Issues: outliers, asymmetry, bimodality




Descriptive statistics: Dispersion

¢ Sample variance (squared standard deviation):
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* Quantiles (eg: “90% of data lie in range [1.5 8.2]”)

Descriptive statistics: Multi-D
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Y (normalized)

3 -2 -1 0 1 2 3
X (normalized)

Correlation r captures dependency
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Regression (revisited)

j=pi+e .
Optimal regression line slope:
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Probability: an abstract mathematical
framework for describing random quantities, or
stochastic models of the world

Statistics: use of probability to summarize,
analyze, interpret data. Fundamental to all
experimental science.
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Inference

Probabilistic Middleville

In Middleville, every family has two children, brought by
the stork.

stork delivers boys and girls randomly, wi
probabilities {BB,BG,GB,GG}={0.2,0.3,0.2,0.3}

i \
probab‘\\‘\st\c mode

You pick a family at random and discover that one
of the children is a girl. new datd

What are the chances that the other child is a girl?
inference




Statistical Middleville

In Middleville, every family has two children, brought by
the stork.

In a survey of 100 of the Middleville families, 32 have two
girls, 23 have two boys, and the remainder one of ‘i,a%lé\

You pick a family at random and discover that one
of the children is a girl. new data

What are the chances that the other child is a girl?
inference

Univariate Probability (outline)

distributions: discrete and continuous

expected value, moments

transformations: affine, monotonic nonlinear

cumulative distributions. Quantiles, drawing
samples

Frequentist view of probability: limit of infinite data

probability

data —> histogram e .
g distribution
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Probability distributions

Discrete random variable

Continuous random variable

0.2 0.03
0.025]

0.15
0.02

z =

T 01 = 0.015]
0.01

0.05
0.005

0

%

234567 89101112
0< P(x)<1, Vi
Y P(x,)=1

100 150
X

0< p(x)
I: p(x)dx=1

Example distributions

a not-quite-fair coin
(Bernoulli)

roll of a fair die
(uniform)

sum of rolls of
two fair dice

clicks of a Geiger counter,

in a fixed time interval ... and, time between clicks
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[Figure: Sean Owen, Cloudera Engineering]




Frequentist view of probability: limit of infinite data

) probability
data = histogram > oo don
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Expected value (discrete)

E(X)= Y x,p(x,)

n=1

(the mean, 1)

1

More generally:  E(f(X))= ZN: f(x)p(x,)

n=1

Expected value (continuous)

E(x) = /:v p(x) dx [“mean”, p]

E(z?) = /x2 p(z) dz [“second moment”, m:]
E((w-w?) = [ u)? pla) da “variance”, o]
= /x2 p(z) de — p? [m2 minus p*]

E(f(x)) = /f(x) p(z) dzx [“expected value of f™’]

Note: expectation is an inner product, and thus linear, so:

E(af(z) +bg(z)) = aE (f(x)) + bE (g(x))




Transformations of random variables
Y=aX+b

“affine” (linear plus constant)

Analogous to sample mean/covariance:

U, =E(Y)=aE(X)+b=au, +b
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X
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Full distribution: ~ py(y) = ; Px

Y =g(X)

“monotonic” (derivative > 0)
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Cumulative distributions
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Confidence intervals
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Drawing samples - discrete

Drawing samples - continuous

3) Result is
uniformly
distributed!

[on board]

2) Transform using
the cumulative
distribution function
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1) Sample
from p(x) k=S




Drawing samples - continuous

1) Draw
uniform
sample

100
X

150

p(x)

2) Transform using
the inverse
cumulative

distribution function

3) This gives a
sample from p(x) !

50

100

150

Multi-variate probability (outline)

¢ Joint distributions

* Marginals (integrating)

* Conditionals (slicing)

* Bayes’ rule (inverse probability)

* Statistical independence (separability)

* Mean/Covariance

¢ Linear transformations

Joint and conditional probability - discrete
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Conditional probability

Neither A nor B

p(A& B)

p(A4| B) = probability of 4 given that B is asserted to be true = B
P!

Joint and conditional probability - discrete
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P(Ace)

P(Heart)

P(Ace & Heart) “ "
P(Ace | Heart) Independence
P(not Jack of Diamonds)

P(Ace | not Jack of Diamonds)

Joint distribution (continuous)
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Marginal distribution
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p(z,y) 100

p(z) = /p(om y)dy L0015
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Conditional distribution

p(z,y) p(zly = 90)
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Conditional distribution
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More generally:
\ \

p(m|y) = p(CC, y)/p(y) slice joint distribution normalize (by marginal)




Bayes’ Rule

LI An Effay towards folving a Problem in
the Dottrine of Chances. By the late Rev.
Mr. Bayes, F. R. 8. communicated by Mr.
Price, in a Letter to John Canton, A. M.
F.R. 8.

Dear Sir,
Read Dec. 23, ) Now fend you an effay which I have
1763 found among the papers of our de-
ceafed friend Mr. Bayes, and which, in my opinion,
has great merit, and well deferves to be preferved.

p(zly) = p(ylz) p(z)/p(y)

(a direct consequence of the definition of conditional probability)

Bayes’ Rule

p(A4| B) = probability of 4 given that B is asserted to be true = %
P
(A& B)= p(B)p(A|B)
=p(A)p(B|A)
P(B| 4)p(4)
A|B)=——""7"—"
= p(4|B) (B

Conditional vs. marginal

0.035
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P(x); P(x]Y:

%80

In general, the marginals for different Y values differ.

When are they they same? In particular, when are all
conditionals equal to the marginal?




Statistical independence

100,

90

Random variables X and Y are statistically
independent if (and only if): >

p(x,y)=pxX)p(y) Vxy

50 80 90 100 110 120
x

(note: for discrete distributions, this is an outer product!)

Independence implies that all conditionals are equal to the
corresponding marginal:

p(x|y)=p(x,y)/ p(y)=p(x) Vx,y

Special case: Sum of two RVs

Let Z=X+Y. From rules for affine transforms:
u;=EZ)=EX)+EY)
0'% = 6)2( + 20y + 0)2,

Special case: if X and Y are independent, then:
E(XY)=E(X)E(Y) and thus oy, =0

2_ 2 2
0; = oy + oy

p,(z) is the convolution of p,(x) and p, ()

[on board]

Gaussian (a.k.a. “Normal”) densities

Parameterized by mean and stdev:

Multi-dimensional generalization:

p(E) = b DT @2
(2m)NC|

mean: [0.2,0.8]
cov: [1.0-0.3;
-03 04]




Gaussian properties
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* joint density of indep Gaussian RVs is elliptical [casy]

¢ conditionals of a Gaussian are Gaussian [casy]

* marginals of a Gaussian are Gaussian

* product of two Gaussian dists is Gaussian [casy]

* sum of Gaussian RVs is Gaussian

* the most random (max entropy) density of given variance
e central limit theorem: sum of many RVs is Gaussian [hard]

let P=C~! (the “precision” matrix)
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Generalized marginals of a Gaussian
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p(z) is Gaussian, with:
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Correlation and regression
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Q to the mean”
Correlation implies dependency '-
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... but not slope

LN

1 1 1 a a1

S — — N\

Correlation between variables does not uniquely indicate ,-
the shape of their joint distribution

» Anscombe’s Quartet
Each dataset has the same summary statistics (mean, standard deviation,
correlation), and the datasets are clearly different, and visually distinct.

I [ Il
I =
1% I | AY




More extreme
examples !

X Mean:
Y Mean:
X SD
Y SD
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Per capita cheese consumption
Number of people who died by becoming tangled in their bedsheets .
Nevertheless,

one can find o
correlation if .

one looks forit! = « =« o« a e e

Worldwide non-commercial space launches
orrelates w

Sociology doctorates awarded (US)

Letters in Winning Word of Scripps National Spelling Bee
rrelatos with

Number of people killed by venomous spiders

http://www.tylervigen.com/spurious-correlations

Covariation/correlation does not imply causatiorl

« Correlation does not provide a direction for causality.
For that, you need additional (temporal) information.

* More generally, correlations are often a result of
hidden (unmeasured, uncontrolled) variables...

Example: conditional independence: H

p(A,BIH)=p(AlH)pBIH) _'/‘\_'_

Ai .B

[On board: in Gaussian case, connections are explicit in the precision matrix]

Another example: Simpson’s paradox l-

expression of gene B

expression of gene A
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Milton Friedman’s Thermostat

. True interactions:
O = outside temperature (assumed cold)

I = inside temperature (ideally, constant)

@ ——»
E = energy used for heating O' .E
A/
9,

Statistical interactions, P=C-1:
Statistical observations: N -
e O and I uncorrelated Q S .
® T and E uncorrelated 0 E
® O and E anti-correlated
D,

Some nonsensical conclusions:
® O and E have no effect on I, so shut off heater to save money!
® [ is irrelevant, and can be ignored. Increases in E cause decreases in O.

Statistical summary cannot replace scientific reasoning/experiments!

Summary: Correlation misinterpretations

¢ Correlation does not imply data lie near a line/plane/
hyperplane (subspace), with simple noise perturbations

¢ Correlation implies dependency, but lack of correlation
does not imply independence

¢ Correlation does not imply causation (temporally, or by
direct influence/connection)

¢ Correlation is a descriptive statistic, and does not eliminate
the need for scientific reasoning/experiment!




