Mathematical Tools for Neural and Cognitive Science

Fall semester, 2019

Section 1: Linear Algebra

Linear Algebra

"Linear algebra has become as basic and as applicable as calculus, and fortunately it is easier"

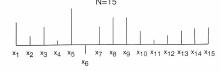
- Gilbert Strang, Linear Algebra and its Applications

Vectors

$$\vec{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_N \end{pmatrix}$$

In two or three dimensions, we can draw these as arrows:

In higher dimensions, we typically must resort to a "spike-plot" $\,$



Vector operations

- scalar multiplication
- addition, vector spaces
- length, unit vectors
- inner product (a.k.a. "dot" product)
 - properties: commutative, distributive
 - geometry: cosines, orthogonality test

[on board: geometry]

Inner product with a unit vector

- projection
- distance to line
- change of coordinates

[on board: geometry]

Vectors as "operators"

- "averager"
- "windowed averager"
- "gaussian averager"
- "local differencer"
- "component selector"

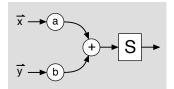
[on board]

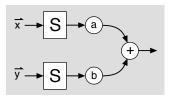
Linear System

S is a linear system if (and only if) it obeys the principle of superposition:

$$S(a\vec{x} + b\vec{y}) = aS(\vec{x}) + bS(\vec{y})$$

For *any* input vectors $\{\vec{x}, \vec{y}\}\$, and *any* scalars $\{a, b\}\$, the two diagrams at the right must produce the same response:





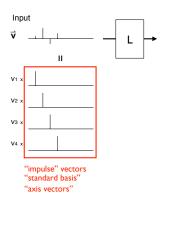
Linear Systems

- Very well understood (150+ years of effort)
- Excellent design/characterization toolbox
- An idealization (they do not exist!)
- Useful nevertheless:
 - conceptualize fundamental issues
 - provide baseline performance
 - good starting point for more complex models

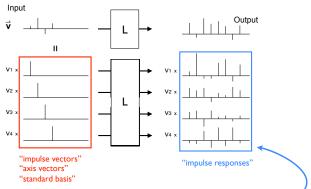
Implications of Linearity



Implications of Linearity



Implications of Linearity

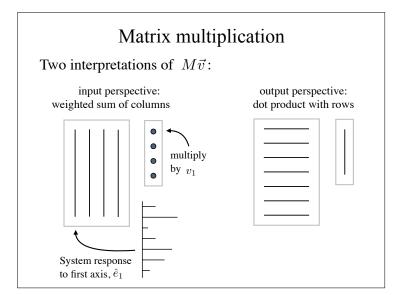


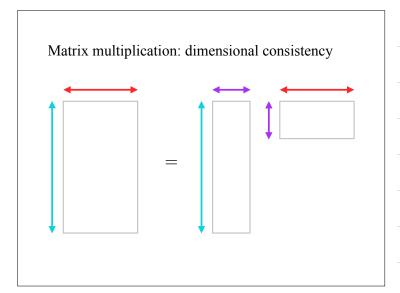
Response to *any* input can be predicted from responses to impulses of This defines the operation of *matrix multiplication*

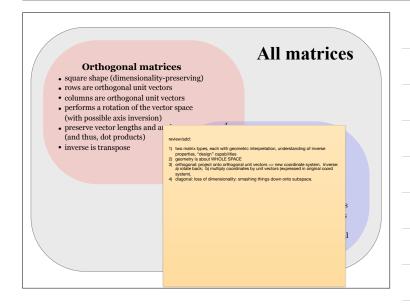
Matrix multiplication

- Two interpretations of $M\vec{v}$ (see next slide):
 - input perspective: weighted sum of columns (from diagrams on previous slides)
 - output perspective: inner product with rows
- distributive property (directly from linearity!)
- associative property: cascade of two linear systems defines the product of two matrices
- transpose A^T , symmetric matrices $(A = A^T)$
- generally *not* commutative $(AB \neq BA)$, but note that $(AB)^T = B^TA^T$
- Vectors: Inner products, Outer products

[details on board]







Singular Value Decomposition (SVD)

- can express *any* matrix as $M = U S V^T$ "rotate, stretch, rotate"
 - columns of V are basis for input coordinate system
 - columns of U are basis for output coordinate system
 - S rescales axes, and determines what "gets through"
- interpretation: sum of "outer products"
- non-uniqueness? permutations, sign flips
- nullspace and rangespace
- inverse and pseudo-inverse

[details on board]

SVD geometry (in 2D)

Consider applying M to four vectors (colored points)

$$M = U S V^T$$

rotate

stretch

rotate

 V^T
 S
 U

(note order of transformations!)

