Mathematical Tools
for Neural and Cognitive Science

Fall semester, 2019

Section 3:
Linear Shift-Invariant Systems

Linear shift-invariant (LSI) systems

® Linearity (previously discussed):

“linear combination in, linear combination out”

® Shift-invariance (new property):

“shifted vector in, shifted vector out”

® These two properties are independent (think of
some examples that have both, one, or neither)

LSI system

As before, express input as a sum of
“impulses”, weighted by elements of x




LSI system
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 Linearity => response to x is sum of
responses to impulses, weighted by
elements of x

« Shift-invariance => responses to
impulses are shifted copies of each other
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LSI systems are characterized by their “impulse response”
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Convolution
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® Sliding dot product
e Structured matrix
® Boundaries? zero-padding, reflection, circular

e Examples: impulse, delay, average, difference

Feedback LSI system
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(For this class, we’ll stick to feedforward (FIR) systems)

2D convolution
“sliding window”

Kernel
matrix

/— Column j Column j

Input
image

/7
(7 77 [/ 77777 Output
[ ] & FFFFF

Row i —», VA pixel

AL

Array of
products

B
Il
gi

Summer Scaling
constant

[figure c/o Castleman]




“separable” filter
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e Outer product
® Simple design/implementation
® Efficient computation

[figure: Adelson & Bergen 85]

Discrete Sinusoids

~> “frequency” (cycles/vectorLength)
example : k =2
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“frequency”
(radlans/sample) example: A =1.5, ¢ =8m/32

More generally: A cos(wn — ¢)
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Shifting Sinusoids

Acos(wn — ¢) = Acos(¢) cos(wn) + Asin(¢) sin(wn)
... via a well-known trigonometric identity:

cos(a — b) = cos(a) cos(b) + sin(a) sin(b)

We’ll also need conversions between polar
and rectangular coordinates:

x = Acos(¢), y= Asin(¢)

= VAT, §=tan\(y/x)




Shifting Sinusoids

Acos(wn — ¢) = Acos(¢) cos(wn) + Asin(¢) sin(wn)

fixed cos/sin vectors:

scale factors:
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Any scaled and shifted sinusoidal vector can be written
as a weighted sum of two fixed {sin, cos} vectors!

Shifting Sinusoids

Acos(wn — ¢) = Acos(¢) cos(wn) + Asin(¢) sin(wn)

fixed cos/sin vectors:

A=1.6, ¢=2n1/12
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Any scaled and shifted sinusoidal vector can be written
as a weighted sum of two fixed {sin, cos} vectors!

Shifting Sinusoids

Acos(wn — ¢) = Acos(¢) cos(wn) + Asin(¢) sin(wn)

fixed cos/sin vectors:

A=16, p=21612 | 1 TT
Ts

A e i e il

S + 1
) ll Ml ll ; Billic ?TWT?&

e R

0 10 20 30

Any scaled and shifted sinusoidal vector can be written
as a weighted sum of two fixed {sin, cos} vectors!




LSI response to sinusoids

x(n) = COS(wn) (input)

y(n) = Z r(m) CcOS (w(n — m)) (convolution formula)

LSI response to sinusoids

z(n) = cos(wn)

Z r(m) cos (w(n —m)) (trig identity)

Cos(wn) sin(wn)

inner product of impulse response with cos/sin, respectively

y(n)

LSI response to sinusoids

z(n) = cos(wn)

y(n) = 3 r(m)cos (win —m))

Cos(wn) sin(wn)

= er(w) cos(wn) + sr(w) sin(wn)

er(w)

sr(w)




LSI response to sinusoids
z(n) = cos(wn)

y(n) = Y r(m)cos(w(n—m))

m

= Z r(m) cos(wm) cos(wn) + Z r(m) sin(wm) sin(wn)

m m

= cr(w) cos(wn) + sr(w) sin(wn)

A, (w) cos(dr(w))eos(wn) + (A, (w) sin(¢,(w))pin(wn)

(rectangular -> polar coordinates)

sp(w)

LSI response to sinusoids
z(n) = cos(wn)

y(n) = 3 r(m)cos (win —m))

m

Z r(m) cos(wm) cos(wn) + Z r(m) sin(wm) sin(wn)

m m

= cr(w) cos(wn) + sr(w) sin(wn)
= Ay (w)cos(¢p(w)) cos(wn) + A(w)sin(¢,(w))sin(wn)

= AT (w) Cos(wn — ¢T (w)) (trig identity, in the opposite direction)
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“Sinusoid in, sinusoid out” (with modified amplitude & phase)

— L — Ar(w)[

LSI response to sinusoids

More generally, if input has amplitude A, and phase ¢, ,

z(n) = A, cos(wn — ¢,)

then linearity and shift-invariance tell us that

) cos(wn

amplitudes multiply phases add

¢:&J) A

“Sinusoid in, sinusoid out” (with modified amplitude & phase)
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The Discrete Fourier transform (DFT)

o Construct an orthogonal matrix of sin/cos pairs,
covering different numbers of cycles

e Frequency multiples of 27/N radians/sample,
(specifically, 27k /N, for k =0,1,2,...N/2)

® For k=0 and k = N/2, only need the cosine part
(thus, N/2+1 cosines, and N/2 — 1 sines)

® When we apply this matrix to an input vector, think
of output as paired coordinates

® Common to plot these pairs as amplitude/phase

[details on board...]

Fourier Transform matrix

k=0 k=1 k=2 k=3 k=N/2

> ...
q
e

2k . 2k
cos Tn sin Tﬂ (plotted sinusoids are continuous, N=32)

The Fourier family

signal domain

continuous discrete
discrete-time Fourier transform

continuous | Fourier transform
Fourier series discrete Fourier transform I

frequency
domain

discrete

(we are here)

The “fast Fourier transform” (FFT) is a computationally efficient
implementation of the DFT, requiring Nlog(N) operations,
compared to the N2 operations that would be needed for matrix

multiplication.




Reminder: LSI response to sinusoids
z(n) = cos(wn)
y(n) = Y r(m)cos(w(n —m))

= cr(w) cos(wn) + Sr(w) sin(wn)

= A (w)cos(¢p(w))cos(wn) + A (w)sin(¢,(w))sin(wn)

= A, (w)cos(wn — ¢, (w))

These dot products are the Discrete Fourier Transform
of the impulse response, r(m)!

Fourier & LSI
r /\/\\/V\/\/v —{L -
Fourier & LSI
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91(1>
C:r(2>
54(2)

note: only 3 (of many) frequency components shown




Fourier & LSI
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note: only 3 (of many) frequency components shown

Fourier & LSI
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LSI systems are characterized by their frequency response,
specified by the Fourier Transform of their impulse response

Complex exponentials:
“bundling” sine and cosine

e = cos(0) + isin() (Euler’s formula)
Ae™™ = Acos(wn) + iAsin(wn)

real part:

imaginary part:

[on board: reminders of addition/multiplication of complex numbers]




Complex exponentials:
“bundling” sine and cosine

eiwn L Ar(w) eilwn—or(w)) AT(w) e—ibr(w) giwn

F.T. of impulse response!

Complex exponentials:
“bundling” sine and cosine

eiwn L Ar(w) etlwn—or(w)) AT(w) e—ibr(w) giwn
— eiwn

F.T. of impulse response!

Note: the complex exponentials are eigenvectors!

The “convolution theorem”

T e——ep

convolve with 7




The “convolution theorem”
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Yy
convolve with 7
pointwise multiply by 7*
Y

WIOJSURI], JOLINO
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Fourier Transform
= — 8y

—

The “convolution theorem”

S e

convolve with 7

Fourier Transform
ULIOJSURI], JOLINO,]
ASIOAUL

pointwise multiply by 7*
T + Y
§j=L#=FRF'Z = FTy=RFTz
K (diagonal matrix)

Recap...

® [inear system
- defined by superposition

- characterized by a matrix

® Linear Shift-Invariant (LSI) system
- defined by superposition and shift-invariance
- characterized by a vector, which can be either:
»the impulse response

»the frequency response (amplitude and phase).
Specifically, the Fourier Transform of the impulse
response specifies an amplitude multiplier and a
phase shift for each freauency.




Discrete Fourier transform
(with complex numbers)

N-1
~ —iw 27Tk3
— kT —
T = E Tne where wp = —
N
n=0
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Tp = — T €'“r" (inverse)
N k=0

[on board: why minus sign? why 1/N?]

Visualizing the (Discrete)
Fourier Transform

® Two conventional choices for frequency axis:

= Plot frequencies from k=0 to k=N/2

(in matlab: 1 to N/2-1)

= Plot frequencies from k=-N/2 to N/2-1

(in matlab: use fftshift)

® Typically, plot amplitude (and possibly phase,
on a separate graph), instead of the real/
imaginary (cosine/sine) components

Some examples

® constant

® sinusoid (see next slide)

® impulse

® Gaussian - “lowpass”

® DoG (difference of 2 Gaussians) - “bandpass”

® Gabor (Gaussian windowed sinusoid) - “bandpass”

[on board]




wn — cos(wn) + isin(wn) e

—iwn
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cos(wn) = i(e“"" +e7m)

;i(eiwn _

sin(wn) = 5

e—iwn)

= cos(wn) — isin(wn)

Example for k=2, N=32 (note indexing and amplitudes):

Z & = fft(z) fftshift(7)
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What do we do with
Fourier Transforms?

* Represent/analyze periodic signals

* Analyze/design LSI systems. In particular, how do

you identify the nullspace?

Retinal ganglion cells (1D)

Responsivity
(impulses per second)

SRS ]
001 01 10 10
Spatial frequency (cycles per degree)

Enroth-Cugell and Robson (1984)




Sampling causes “aliasing”
0 1 2 3 4 5 6 7 8 9 10

Sampling process is linear, but many-to-one (non-invertible)

o

“Aliasing” - one frequency masquerades as another jon board]

Given the samples, it is common/natural to assume, or enforce,
that they arose from the lowest compatible frequency...

Effect of sampling on the Fourier Transform:
Sum of shifted copies

-----------

Real-world
aliasing

downsample by 2

“Moiré pattern”




Pre-filtering to avoid spectral overlap (“aliasing”)

X(w) —[ L(w) ]—P/%—» X, (w)
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lowpass filter,
Wﬂ/\jﬁ at m/A
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Real-world
aliasing

downsample by 2,

'\with pre-filtering




