
Lab 4 — 2D Regression 
problem

October 5th, 2018



Outline the problem:
• Load regress1.mat

• Plot Y as function of X

• Least squares fit of data with polynomial of order 0-5

• Using SVD


• Plot the fit

• Plot the squared errors as function of order of poly



Plot x as function of y
• This is the data we want to fit



1. Think

2. Write the expression

3. X = USVt

4. Rotate into S-space

5. “Trim” to relevant expression

6. Solve for the combination of ßs that minimize the 

expression

7. Rotate back

8. Fit your data

9. Asses your work:


1. Plot it

2. Calculate the error

Outline the solution:



Step 1 — Thinking
• Want to find an equation to fit our data.

• What’s our question?

• Finding the beta that fits data best, produces the smallest 

error from the data points



• Want to find an equation to fit our data.

• What’s our question?
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• 1st order example:

• Write it in polynomial notation:

Step 1 — Thinking



• Write it in polynomial notation:

• Higher orders:

• Re-write in matrix form:

Step 2 — writing expression



• Our expression:

Step 3 — SVD

• Do svd of matrix X:

• Rearrange:

• Why do we want to rotate y by Ut?



• We rotated y and ß to the “S space”

Step 4 — rotate into S-space

• Rewrite:

Don’t lose track of your 
variables!

• Notice:

• How many non-zero values does S have for a first order 

polynomial?



• Only 2 non-zero S values in this example:

Step 5 — Trim

Don’t lose track of your 
variables!

• How much can we minimize this expression?

• The betas we choose will only affect y*_1 and y*_2



• How much can we minimize this expression?

Step 6 — solve for ßopt

Don’t lose track of your 
variables!



• Good thing we kept track of our variables!

Step 7 — going back

Don’t lose track of your 
variables!

• Remember: ß is the solution, not 
ß* 


• The green ßopt is what we plug in 
our original expression:



1. Think

2. Write the expression

3. X = USVt

4. Rotate into S-space

5. “Trim” to relevant expression

6. Solve for the combination of ßs that minimize the 

expression

7. Rotate back

8. Fit your data

9. Asses your work:


1. Plot it

2. Calculate the error

Summary of steps:
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 Different orders:



1. Think

2. Write the expression

3. X = USVt

4. Rotate into S-space

5. “Trim” to relevant expression

6. Solve for the combination of ßs that minimize the 

expression

7. Rotate back

8. Fit your data

9. Asses your work:


1. Plot it

2. Calculate the error

Error:



Lab 4 — PCA overview
October 5th, 2018



Reducing dimensionality
• Complicated to work with high dimensional data

• Reducing dimensionality is good

• Example for visualization: 2d —> 1d

2D data

Project onto pc1

Project onto pc2

1D data

Check out the animation! http://setosa.io/ev/principal-component-analysis/



Reducing dimensionality
• Complicated to work with high dimensional data

• Reducing dimensionality is good

• Example for visualization: 2d —> 1d

2D data 1D data

Project onto pc1

Project onto pc2Not much use for 2d…

Let’s use this concept in 

higher dimensions

Check out the animation! http://setosa.io/ev/principal-component-analysis/



12 Neurons — intro
• Recording from 12 n simultaneously

• Record 150 observations

n1 n2 n12…
obs1
obs2

obs150

…



Reducing dimensionality
• Low dim representation of the 12 neurons

• OR low dim representation of the 150 observations

n1 n2 n12…
obs1
obs2

obs150

…



Thinking… it’s important
• What would it mean to reduce the dimensionality of the 

12 neurons?

• Simple ideal example: 

n1 n2 n12…
obs1
obs2

obs150

…

n1, n2, … n6
n7, n8, … n12
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Thinking… it’s important
• What would it mean to reduce the dimensionality of the 

12 neurons?

• Simple ideal example: 

n1, n2, … n6
n7, n8, … n12

n1, n2, … n6
n7, n8, … n12

And

We can say…

• Neurons 1:6 are highly correlated

• Neurons 7:12 are highly 

correlated

• Neurons 1:6 are not at all 

correlated with neurons 7:12 



Thinking… it’s important
• What would it mean to reduce the dimensionality of the 

12 neurons?

• Simple ideal example: 

n1, n2, … n6
n7, n8, … n12

n1, n2, … n6
n7, n8, … n12

And

We can say…

• Neurons 1:6 are highly correlated

• Neurons 7:12 are highly 

correlated

• Neurons 1:6 are not at all 

correlated with neurons 7:12 

How does each neuron 
correlate with all the other 

11 neurons?



Correlation across neurons:

n1n2
n2n1

n12n1

n1n12
n2n12

n12n2

n2n2
n1n1

n12n12

• 12x12 table

• How can we write this in linear algebra form?



Correlation across neurons:
• 12x12 table

• How can we write this in linear algebra form?

obs1
obs2

obs150

n1 n2 n12…
…



Correlation across neurons:
• 12x12 table

• How can we write this in linear algebra form?

• MtM — covariance matrix of M

n1 n2 n12…

n1

n2

n12

…

n1n1

=



Important first step!
• What if the the baseline of a neuron is higher?

• Do we care about baseline?

• Probably not… here we care about the correlation across 

neurons

obs1
obs2

obs150

n1 n2 n12…

…



Important first step!
• Let’s center the data:

• Subtract mean of each column

obs1
obs2

obs150

n1 n2 n12…

…

obs1
obs2

obs150
n1

-m
ea

n(n
1)

…

…

n2
-m

ea
n(n

2)

n1
2-

m
ea

n(n
12

)

Center data



What would you do if you want to 
cluster the 150 observations?

• How would you center the data?

• How would you get the covariance matrix?



Back to neurons
• Want a lower dimensional representation:

• How many dimensions? Which dimensions?


• Ready for eigen decomposition of Mt*M

• eig( MtM ) = V * lambda * Vt

• Where V is an orthogonal matrix, Vt is the transpose of V

• Lambda is a diagonal matrix

Orthogonal Diagonal Orthogonal

V Vt
V

MtM     =



Back to neurons
• Want a lower dimensional representation:

• How many dimensions? Which dimensions?


• Ready for eigen decomposition of Mt*M

• eig( MtM ) = V * lambda * Vt

• Where V is an orthogonal matrix, Vt is the transpose of V

• Lambda is a diagonal matrix

Orthogonal Diagonal Orthogonal

V Vt
V

MtM     =

This must look familiar…



SVD vs. Eigen decomp
• Clear similarities (decomposing a matrix into 3, 2 ortho 1 

diagonal)

• SVD can decompose any matrix — Eigen can’t

• Matrix must be square for Eigen

• Eigen decomposition is a special case of SVD

U VtSM        =

Orthogonal Diagonal Orthogonal

V Vt
V

MtM     =



SVD vs. Eigen decomp
• You can get to Eigen decomposition of Mt*M through the 

SVD of M:

Orthogonal Diagonal Orthogonal

V Vt
V

MtM     =



SVD vs. Eigen decomp
• Columns of V are the Eigen vectors of Mt*M

• What about the S matrix from svd( M )? How does it relate 

to Eigen decomposition?



Eigen decomp
• Eigen vector 1 (e1) gets scaled by eigenvalue s1^2



Reducing dimensionality
• What reduced dimensionality do we want?



• Project data onto e1 — get most variance

• Project data onto e3 (small eigenvalue in this example) — 

get much less variance. 

Reducing dimensionality



• In this example, because eigenv1 and eigenv2 >> eigenv3 
and the others, we can plot our data in 2 dimensions

Reducing dimensionality



Plotting the Eigenvectors:
• Spike plot of 12d vectors:

• What does each element/index represent?



Reducing dimensionality
• Complicated to work with high dimensional data

• Reducing dimensionality is good

• Example for visualization: 2d —> 1d

2D data

Project onto pc1

Project onto pc2

1D data

Check out the animation! http://setosa.io/ev/principal-component-analysis/



Summary
Data: 150x12 matrix of 12 neurons

1. Think about row and columns

2. What do you want to know?

3. Center data

4. Compute the right covariance matrix

5. Eigen decomposition

6. Visualize S values — choose reduced dimensionality

7. Answer questions about your data:


1. Plot it in the reduced dimensionality — think about 
what this means


2. Plot eigenvectors — think about what they mean



Happy Friday — the weekend is so close!


