Lab 4 — 2D Regression

poroblem
October 5th, 2018



Outline the problem:

Load regress1.mat

Plot Y as function of X

Least squares fit of data with polynomial of order 0-5
e Using SVD

Plot the fit

Plot the squared errors as function of order of poly



Plot x as function of y

e This is the data we want to fit

Data
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Outline the solution:

Think

Write the expression

X = USVt

Rotate into S-space

“Trim” to relevant expression

Solve for the combination of Bs that minimize the
expression

Rotate back

Fit your data

Asses your work:

1. Plot it

2. Calculate the error



Step 1 — Thinking

e Want to find an equation to fit our data.

e What’s our question?

e Finding the beta that fits data best, produces the smallest
error from the data points
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Step 1 — Thinking

e 1st order example:

 Write it in polynomial notation:

(—5 = ‘5. ;)—\O' +@o_¢;/°



Step 2 — writing expression

e Write it in polynomial notation:
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e Higher orders:
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Step 3 — SVD

Our expression:

i //g -Xpl°

Do svd of matrix X:
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Rearrange:
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Why do we want to rotate y by Ut?



Step 4 — rotate into S-space

 \We rotated y and B to the “S space”
/ U«' %, -~ T 5 /z Don't lose track of your

variables!
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e Rewrite: \/rﬁ :ﬁ*

e Notice:

e How many non-zero values does S have for a first order
polynomial?



Step 5 — Trim

e Only 2 non-zero S values in this example:

=y =& Don't lose track of your
‘6 B 5 ﬁ variaples!
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* The betas we choose will only affect y*_1 and y*_2
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e How much can we minimize this expression?




Step 6 — solve for Bopt

e How much can we minimize this expression?

- 9 ﬁ Don't lose track of your
lﬁ variables!

EER[A )




Step 7 — going back

e Good thing we kept track of our variables!

Don't lose track of your
variaples!

,r.> )k
* Remember: B3 is the solution, not - \/ §*
3 -

* The green Bopt is what we plug in
our original expression:
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Summary of steps:

Think

Write the expression

X = USVt

Rotate into S-space

“Trim” to relevant expression

Solve for the combination of Bs that minimize the
expression

Rotate back

Fit your data

Asses your work:

1. Plot it

2. Calculate the error



Summary of steps:

Fit with 1st order polynomial

1. Plotit



Different orders:

_ Fit with 1st order polynomial ‘

Fit with Oth order polynomial
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Error:

Squared error as function of polynomial order
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Order of polynomial

2. Calculate the error



Lab 4 — PCA overview

October 5th, 2018



Reducing dimensionality

e Complicated to work with high dimensional data
e Reducing dimensionality is good
e Example for visualization: 2d —> 1d

2D data 1D data
" original data set
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Check out the animation! http://setosa.io/ev/principal-component-analysis/



Reducing dimensionality

e Complicated to work with high dimensional data
e Reducing dimensionality is good
e Example for visualization: 2d —> 1d

2D data 1D data

original data set

Not much use for 2d...

Let’s use this concept in
- higher dimensions

Check out the animation! http://setosa.io/ev/principal-component-analysis/



12 Neurons — Intro

e Recording from 12 n simultaneously
e Record 150 observations

nlt n2 .. ni2

obs1
obs?2

obs150



Reducing dimensionality

e |Low dim representation of the 12 neurons
e OR low dim representation of the 150 observations

nt n2 .. ni2

obs1
obs?2

obs150



Thinking... It's iImportant

e What would it mean to reduce the dimensionality of the
12 neurons?

e Simple ideal example:

n1, n2, ... n6
Nl n2 n12 7,18, ... n12 ¢
obs1 ANd
obs?2 n1,n2, ... n6 +
n/, n8, ... n12

obs150



Thinking... It's iImportant

e What would it mean to reduce the dimensionality of the
12 neurons?

e Simple ideal example:

nil, n2, ... N6
At some time point: n/7,ng, ... n12 +
And
n1, n2, ... n6 +
n/7,n8, ...n12

Activity

ni, n2, . ni2



Thinking... It's iImportant

e What would it mean to reduce the dimensionality of the
12 neurons?

e Simple ideal example:

nil, n2, ... N6
At some other time point: n7,n8, ...n12 +
And
n1, n2, ... n6 +
n/7,nd, ...n12

Activity

nl, n2, . ni2



Thinking... It's iImportant

e What would it mean to reduce the dimensionality of the
12 neurons?

e Simple ideal example:

nil, n2, ... N6
All you need is 1D: n7,ng, ... n12 +
And
n1, n2, ... n6 +
n/7,nd, ...n12

Activity

nl, n2, . ni2



Thinking... It's iImportant

e What would it mean to reduce the dimensionality of the
12 neurons?

e Simple ideal example:

n1, n2, ... n6
All you need is 1D: n7,ng, ... n12 +
And
n1, n2, ... n6 +
n/7,nd, ...n12

Activity

ni, n2, . ni2



Thinking... It's iImportant

e What would it mean to reduce the dimensionality of the

12 neurons?
e Simple ideal example:

We can say...
* Neurons 1:6 are highly correlated

* Neurons 7:12 are highly
correlated

* Neurons 1:6 are not at all
correlated with neurons 7:12

n1, n2,

n/, n8, . n12*
And

n1, n2, ... n6 *

n/, n8, ... n12



Thinking... It's iImportant

e What would it mean to reduce the dimensionality of the
12 neurons?

e Simple ideal example:

n1, n2, ... n6
We can say...
* Neurons 1:6 are highly correlated n7,ng, ...n12 +
* Neurons 7:12 are highly And
correlated
* Neurons 1:6 are not at all n1,nz, ...n6 *
correlated with neurons 7:12 n7,n8, ... n12

How does each neuron

correlate with all the other
11 neurons?




Correlation across neurons:

e 12x12 table
e How can we write this in linear algebra form?

A B C D E F G H I J K L M
1 nl n2Z n3 nd4d n5 n6 nZ n8 n9 nl0 nll nl2
2 n1 ninl nin2 nin12
3 n2 n2nl n2n2 n2n12
4 n3
5 n4
& nd
7  nb6
g  n7
9 n8
10 n9S
11 nl0
12 nll

13| n12 ni2n1 ni2n2 n12n12



Correlation across neurons:

e 12x12 table
e How can we write this in linear algebra form?

nt n2 ... ni12

obs1
obs?2

obs150



Correlation across neurons:

e 12x12 table
e How can we write this in linear algebra form?
e MtM — covariance matrix of M

nini n~|| |

n2

nt n2 ... nl12

n1:2‘ |



Important first step!

 What if the the baseline of a neuron is higher?
e Do we care about baseline?

e Probably not... here we care about the correlation across
neurons

nltl n2 ... ni2

obs1
obs?2

obs150



Important first step!

e | et’s center the data:

e Subtract mean of each column NN QO
NN
s S
s &
S
x>
ni n2 ... ni2 c €



What would you do If you want to
cluster the 150 observations?

* How would you center the data?
* How would you get the covariance matrix?



Back to neurons

e \Want a lower dimensional representation:

e How many dimensions? Which dimensions?

e Ready for eigen decomposition of Mt*M

e eig( MtM ) =V * lambda * Vt

e Where V is an orthogonal matrix, Vt is the transpose of V

e | ambda is a diagonal matrix

MtV

V
-

Orthogonal

—

mo—

-

A

Diagonal

! —)
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Vit

Orthogonal

fadi
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Back to neurons

e \Want a lower dimensional representation:

e How many dimensions? Which dimensions?

e Ready for eigen decomposition of Mt*M

e eig( MtM ) =V * lambda * Vt
e WhereV is ¢
e Lambda s ¢

MtV

This must look familiar...

V
]

Orthogonal
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SVD vs. Eigen decomp

e (Clear similarities (decomposing a matrix into 3, 2 ortho 1
diagonal)

e SVD can decompose any matrix — Eigen can’t
e Matrix must be square for Eigen

e Eigen decomposition is a special case of SVD

MtM V A Vit

Orthogonal Diagonal Orthogonal
- — - - - }




SVD vs. Eigen decomp

e You can get to Eigen decomposition of Mt*M through the

SVD of M:

MtM

Define symmetric matrix:

C

pr—

—

V

Orthogonal Diagonal

M*M
usvhosv?h
vstutusv?
vV(sts)vt

]

—— - —_—

Vit
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Orthogon

)

]



SVD vs. Eigen decomp

e Columns of V are the Eigen vectors of Mt*M

e What about the S matrix from svd( M )? How does it relate
to Eigen decomposition?

Define symmetric matrix:

C = M'M
= (UsvhHr(wsvh
= vstutusv?
= V(sts)vt

* “rotate, stretch, rotate back™
e matrix C “summarizes” the

shape of the data



Eigen decomp

e Eigen vector 1 (e1) gets scaled by eigenvalue s1/2

Ur, the kth columns of V,
1s called an eigenvector of C:

Ct, = V(ST V'
= V(S19)é
= s2Véy

Siffk

* output 1s a rescaled copy of input
e scale factor s? is called the

eigenvalue associated with vy,



Reducing dimensionality

e \What reduced dimensionality do we want?

Singular Values

900
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12




Reducing dimensionality

e Project data onto el — get most variance

e Project data onto e3 (small eigenvalue in this example) —
get much less variance.

Visualizing variance of PC1 Visualizing variance of PC3
o0 - S0
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Measurement projection onto e1 Measurement projection onto 3



Reducing dimensionality

e |n this example, because eigenv1 and eigenv2 >> eigenv3d
and the others, we can plot our data in 2 dimensions

Visualizing variance of PC1 Visualizing variance of PC3
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Measurement projection onto e1 Measurement projection onto 3



Plotting the Eigenvectors:

e Spike plot of 12d vectors:
e What does each element/index represent?

el and e2



Reducing dimensionality

e Complicated to work with high dimensional data
e Reducing dimensionality is good
e Example for visualization: 2d —> 1d

2D data 1D data
" original data set
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Check out the animation! http://setosa.io/ev/principal-component-analysis/



Summary

Data: 150x12 matrix of 12 neurons

N o oA W~

Think about row and columns

What do you want to know?

Center data

Compute the right covariance matrix

Eigen decomposition

Visualize S values — choose reduced dimensionality
Answer guestions about your data:

1. Plot it in the reduced dimensionality — think about
what this means

2. Plot eigenvectors — think about what they mean



Happy Friday — the weekend Is so close!



