Lab 4 — 2D Regression problem October 5th, 2018

Outline the problem:

- Load regress1.mat
- Plot Y as function of X
- Least squares fit of data with polynomial of order 0-5
 - Using SVD
- Plot the fit
- Plot the squared errors as function of order of poly

Plot x as function of y

• This is the data we want to fit

Outline the solution:

- 1. Think
- 2. Write the expression
- 3. X = USVt
- 4. Rotate into S-space
- 5. "Trim" to relevant expression
- 6. Solve for the combination of ßs that minimize the expression
- 7. Rotate back
- 8. Fit your data
- 9. Asses your work:
 - 1. Plot it
 - 2. Calculate the error

Step 1 — Thinking

• Want to find an equation to fit our data.

- What's our question?
- Finding the beta that fits data best, produces the smallest error from the data points

Step 1 — Thinking

• Want to find an equation to fit our data.

- What's our question?
- Finding the beta that fits data best, produces the smallest error from the data points

$$\min_{\beta} ||\vec{y} - \beta \vec{x}||^2$$

Step 1 — Thinking

• 1st order example:

• Write it in polynomial notation:

 $\vec{y} = \beta_1 \vec{z}' + \beta_0 \vec{z}'$

Step 2 — writing expression

Write it in polynomial notation:

$$\vec{y} = \beta_1 \vec{x}' + \beta_0 \vec{z}^\circ$$

• Higher orders:

 $y = \beta_2 x^2 + \beta_1 x' + \beta_0 x^0$

• Re-write in matrix form:

call this matrice X

Step 3 – SVD

• Our expression:

• Do svd of matrix X:

• Rearrange:

• Why do we want to rotate y by Ut?

Step 4 — rotate into S-space

• We rotated y and ß to the "S space"

• Rewrite:

$$= \min_{\beta} \|\vec{y}^* - \mathcal{F}^*\|^2$$

- Notice:
 - How many non-zero values does S have for a first order polynomial?

Step 5 — Trim

• Only 2 non-zero S values in this example:

The betas we choose will only affect y*_1 and y*_2

• How much can we minimize this expression?

Step 6 — solve for Bopt

Don't lose track of your

variables!

U'y' = y''

• How much can we minimize this expression?

- 5 B

 $\begin{bmatrix} y_{1}^{*} \\ y_{2}^{*} \end{bmatrix} \begin{bmatrix} 5_{1} & 0 \\ 0 & 9_{2} \end{bmatrix} \begin{bmatrix} 0^{*} \\ 0 \\ 0 \end{bmatrix}$

Step 7 — going back

• Good thing we kept track of our variables!

- Remember: ß is the solution, not ß*
- The green Bopt is what we plug in our original expression:

Summary of steps:

- 1. Think
- 2. Write the expression
- 3. X = USVt
- 4. Rotate into S-space
- 5. "Trim" to relevant expression
- 6. Solve for the combination of ßs that minimize the expression
- 7. Rotate back
- 8. Fit your data
- 9. Asses your work:
 - 1. Plot it
 - 2. Calculate the error

Summary of steps:

- 1. Think
- 2. Write the expression
- 3. X = USVt
- 4. Rotate into S-space
- 5. "Trim" to relevant expression
- 6. Solve for the combination of Bs t expression
- 7. Rotate back
- 8. Fit your data
- 9. Asses your work:
 - 1. Plot it
 - 2. Calculate the error

Different orders:

2.5

2.5

Error:

- 1. Think
- 2. Write the expression
- 3. X = USVt

- 4. Rotate into S-space
 5. "Trim" to relevant expression of the combination of the combinat expression
 - 7. Rotate back
 - 8. Fit your data
- 9. Asses your work:
 - 1. Plot it
 - 2. Calculate the error

Lab 4 — PCA overview October 5th, 2018

- Complicated to work with high dimensional data
- Reducing dimensionality is good
- Example for visualization: 2d —> 1d

Check out the animation! http://setosa.io/ev/principal-component-analysis/

- Complicated to work with high dimensional data
- Reducing dimensionality is good
- Example for visualization: 2d —> 1d

Check out the animation! http://setosa.io/ev/principal-component-analysis/

12 Neurons — intro

- Recording from 12 n simultaneously
- Record 150 observations

- Low dim representation of the 12 neurons
- OR low dim representation of the 150 observations

- What would it mean to reduce the dimensionality of the 12 neurons?
- Simple ideal example:

- What would it mean to reduce the dimensionality of the 12 neurons?
- Simple ideal example:

At some time point:

n1, n2, ... n6 n7, n8, ... n12 And n1, n2, ... n6 n7, n8, ... n12

- What would it mean to reduce the dimensionality of the 12 neurons?
- Simple ideal example:

Activity

n1, n2, ... n6 n7, n8, ... n12 And n1, n2, ... n6 n7, n8, ... n12

At some other time point:

- What would it mean to reduce the dimensionality of the 12 neurons?
- Simple ideal example:

- What would it mean to reduce the dimensionality of the 12 neurons?
- Simple ideal example:

- What would it mean to reduce the dimensionality of the 12 neurons?
- Simple ideal example:

We can say...

- Neurons 1:6 are highly correlated
- Neurons 7:12 are highly correlated
- Neurons 1:6 are not at all correlated with neurons 7:12

n1, n2, ... n6 n7, n8, ... n12 And n1, n2, ... n6 n7, n8, ... n12

- What would it mean to reduce the dimensionality of the 12 neurons?
- Simple ideal example:

We can say...

- Neurons 1:6 are highly correlated
- Neurons 7:12 are highly correlated
- Neurons 1:6 are not at all correlated with neurons 7:12

n1, n2, ... n6 n7, n8, ... n12 And n1, n2, ... n6 n7, n8, ... n12

How does each neuron correlate with all the other 11 neurons?

Correlation across neurons:

- 12x12 table
- How can we write this in linear algebra form?

	Α	В	С	D	Е	F	G	Н	1	J	К	L	М	
1		n1	n2	n3	n4	n5	n6	n7	n8	n9	n10	n11	n12	
2	n1	n1n1	n1n2										n1n12	
3	n2	n2n1	n2n2										n2n12	
4	n3													
5	n4													
6	n5													
7	n6													
8	n7													
9	n8													
10	n 9													
11	n10													
12	n11													
13	n12	n12n1	n12n2										n12n12	

Correlation across neurons:

- 12x12 table
- How can we write this in linear algebra form?

Correlation across neurons:

- 12x12 table
- How can we write this in linear algebra form?
- MtM covariance matrix of M

Important first step!

- What if the the baseline of a neuron is higher?
- Do we care about baseline?
- Probably not... here we care about the correlation across neurons

Important first step!

- Let's center the data:
- Subtract mean of each column

What would you do if you want to cluster the 150 observations?

- How would you center the data?
- How would you get the covariance matrix?

Back to neurons

- Want a lower dimensional representation:
 - How many dimensions? Which dimensions?
- Ready for eigen decomposition of Mt*M
- eig(MtM) = V * lambda * Vt
- Where V is an orthogonal matrix, Vt is the transpose of V
- Lambda is a diagonal matrix

Back to neurons

- Want a lower dimensional representation:
 - How many dimensions? Which dimensions?
- Ready for eigen decomposition of Mt*M
- eig(MtM) = V * lambda * Vt

SVD vs. Eigen decomp

- Clear similarities (decomposing a matrix into 3, 2 ortho 1 diagonal)
- SVD can decompose any matrix Eigen can't
 - Matrix must be square for Eigen
 - Eigen decomposition is a special case of SVD

SVD vs. Eigen decomp

 You can get to Eigen decomposition of Mt*M through the SVD of M:

Define symmetric matrix:

$$C = M^{T}M$$

= $(USV^{T})^{T}(USV^{T})$
= $VS^{T}U^{T}USV^{T}$
= $V(S^{T}S)V^{T}$

SVD vs. Eigen decomp

- Columns of V are the Eigen vectors of Mt*M
- What about the S matrix from svd(M)? How does it relate to Eigen decomposition?

Define symmetric matrix:

$$C = M^{T}M$$

= $(USV^{T})^{T}(USV^{T})$
= $VS^{T}U^{T}USV^{T}$
= $V(S^{T}S)V^{T}$

- "rotate, stretch, rotate back"
- matrix C "summarizes" the shape of the data

Eigen decomp

• Eigen vector 1 (e1) gets scaled by eigenvalue s1^2

 \vec{v}_k , the *k*th columns of *V*, is called an *eigenvector* of *C*:

$$C\vec{v}_{k} = V(S^{T}S)V^{T}\vec{v}_{k}$$
$$= V(S^{T}S)\hat{e}_{k}$$
$$= s_{k}^{2}V\hat{e}_{k}$$
$$= s_{k}^{2}\vec{v}_{k}$$

- output is a rescaled copy of input
- scale factor s_k^2 is called the *eigenvalue* associated with \vec{v}_k

• What reduced dimensionality do we want?

- Project data onto e1 get most variance
- Project data onto e3 (small eigenvalue in this example) get much less variance.

 In this example, because eigenv1 and eigenv2 >> eigenv3 and the others, we can plot our data in 2 dimensions

Plotting the Eigenvectors:

- Spike plot of 12d vectors:
- What does each element/index represent?

- Complicated to work with high dimensional data
- Reducing dimensionality is good
- Example for visualization: 2d —> 1d

Check out the animation! http://setosa.io/ev/principal-component-analysis/

Summary

Data: 150x12 matrix of 12 neurons

- 1. Think about row and columns
- 2. What do you want to know?
- 3. Center data
- 4. Compute the right covariance matrix
- 5. Eigen decomposition
- 6. Visualize S values choose reduced dimensionality
- 7. Answer questions about your data:
 - Plot it in the reduced dimensionality think about what this means
 - 2. Plot eigenvectors think about what they mean

Happy Friday — the weekend is so close!