
PSYCH-GA.2211/NEURL-GA.2201 – Fall 2018
Mathematical Tools for Neural and Cognitive Science

Homework 4

Due: 13 Nov 2018
(late homeworks penalized 10% per day)

See the course web site for submission details. For each problem, show your work - if you only
provide the answer, and it is wrong, then there is no way to assign partial credit! And, please
don’t procrastinate until the day before the due date... start now!

1. Bayes’ rule and eye color. A male and female chimpanzee have blue and brown eyes, re-
spectively. Assume a simple genetic model in which the gene for brown eyes is always
dominant (so that the trait of blue eyes can only arise from two blue-eyed genes, but the trait
of brown eyes can arise from two brown-eyed genes, or one of each). You can also assume
that the apriori probability that each of the four gene configurations is equally probable. For
each question, provide the math, and explain your reasoning.

(a) Suppose you observe that they have a single child with brown eyes. What is the prob-
ability that the female chimp has a blue-eyed gene?

(b) Suppose you observe that they have a second child with brown eyes. Now what is the
probability?

(c) Generalizing, suppose they have N children with brown eyes... express the probability,
as a function of N .

2. Poisson neurons. The Poisson distribution is commonly used to model neural spike counts:

p(k) =
µke−µ

k!
,

where k is the spike count (over some specified time interval), and µ is the mean rate over
that interval.

(a) Create a vector p of length 21, whose elements contain the probabilities of Poisson spike
counts for k = [0...20]. Set the mean rate to µ = 5 spikes/interval. Since we’re clipping
the range at a maximum value of 20, you’ll need to normalize the vector so it sums
to one (the distribution given above is normalized over the range from 0 to infinity).
Write a function samples = randp(p, num) that generates num samples from the
PDF specified by p. [Hint: use the rand function, which generates real values over
the interval [0...1], and partition this interval into portions proportional in size to the
probabilities in p]. Test your function by drawing 1,000 samples, plotting a histogram
of how many times each value is sampled, and comparing this to the frequencies pre-
dicted by p. Verify qualitatively that the answer gets closer (converges) as you increase
the number of samples (try 10 raised to powers [2, 3, 4, 5]).

(b) Imagine you’re recording with an electrode from two neurons simultaneously, whose
spikes have very similar waveforms (and thus can’t be distinguished by the spike sort-
ing software). Create a probability vector, q, for the second neuron, assuming a mean
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rate of 2 spikes/interval. The observed spike counts will be the sum of spike counts
from the two neurons (since their spikes cannot be distinguished). What is the PDF
of the sum of a sample drawn from p and a sample drawn from q? [Hint: the output
vector should have length m + n − 1 when m and n are the lengths of the two input
PDFs.]
Verify your answer by comparing it to the histogram of 1,000 samples generated by
summing two calls to randp. As before, verify that the histogram gets closer as you
increase the number of samples.

(c) Now imagine you are recording from a neuron with mean rate 7 spikes/interval (the
sum of the rates from the neurons above). Compare the distribution of spike counts for
this neuron (computed using the formula above) to the distribution of the sum of the
previous two neurons. Based on the results of these two experiments, if we record a
new spike train, can you tell whether the spikes you have recorded came from one or
two neurons just by looking at their distribution of spike counts?

3. The Central Limit theorem. The Central Limit theorem states that the distribution of the
average of a set of samples (drawn independently, from any distribution with finite mean
and variance) gets closer and closer to a Normal (Gaussian) distribution as the size of the
sample increases. Specifically, if the mean and variance of the original distribtion are µ and
σ, the distribution of the average converges to N (µ, σ/

√
n) as n increases.

(a) Generate 1,000 samples of two values each from a uniform distribution (use rand).
Compute the average of each sample (pair of values), and plot a histogram of these.
What shape is it, approximately? What shape should it have in the limit, as you gather
more and more samples (try with 100,000 samples)? Why?

(b) Now try this again with samples containing 3 values. How has the histogram changed?
Try sample sizes of 4 and 5 as well. When do you judge that the histogram starts looking
Normal?

(c) Test the Normality of the distribution a bit more carefully, using a “Q-Q” (quantile-
quantile) plot (plot the quantiles of one distribution against another). If the two distri-
butions match, the values should lie on a unit-slope line. For this problem, you can use
the matlab function normplot, which plots the quantiles of a sample of data against
those of a Normal distribution of the same mean and variance. First, try this on a
sample of 1,000 values from a normal distribution (use randn). The points should fall
(close to) a straight line, indicating that the sample is close to normal, as expected. Try
this a few times to see how the plot varies (you might want to put them on the same
graph, using matlab’s hold on command). Now call normplot on a sample of 1,000
values from a uniform distribution. Explain qualitatively why it has the shape it does
(hint: think about the quantiles of the uniform and Normal distributions). Do this for
averages of uniform samples of different size (2, 3, 4, ...). Keep increasing sample size
until you cant tell the resulting QQ plot from the QQ plots for samples from the Normal
distribution. Roughly how big does the sample have to be?

4. Multi-dimensional Gaussians.

(a) Write a function samples = ndRandn(mean, cov, num) that generates a set of
samples drawn from an N-dimensional Gaussian distribution with the specified mean
(an N-vector) and covariance (an NxN matrix). The parameter num should be optional
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(defaulting to 1) and should specify the number of samples to return. The returned
value should be a matrix with num columns each containing a sample of N elements.
(Hint: use the MATLAB function randn to generate samples from an N-dimensional
Gaussian with zero mean and identity covariance matrix, and then transform these to
achieve the desired mean/cov. Recall that the covariance of Y = MX is E(Y Y T ) =
MCXMT where CX is the covariance of X).

(b) Now consider the marginal distribution of your 2-D Gaussian in which samples are
projected onto a unit vector û to obtain a 1-D distribution. Write a mathematical ex-
pression for the mean and variance of this marginal distribution as a function of û and
check it for a set of 48 unit vectors spaced evenly around the unit circle. For each of
these, compare the mean and variance predicted from your mathematical expression to
the sample mean and variance estimated by projecting your 1,000 samples onto û. Plot
the mathematically computed mean and the sample mean (on the same plot), and also
plot the mathematical variance and the sample variance.

(c) Now scatterplot 1,000 samples of a 2-dimensional Gaussian (choose an arbitrary nonzero
mean and nonzero covariance). [If you’re having trouble getting it working, you might
want to first try a zero-mean, unit variance example]. Measure the sample mean and
covariance of your data points, comparing to the values that you requested when call-
ing the function. Plot an ellipse on top of the scatterplot, by generating unit vectors
equi-spaced around the circle, and transforming them with a matrix (as in part a) to
have the same mean and covariance as the data. Try this on several random data sets.
Does this ellipse capture the shape of the data?

(d) How would you, mathematically, compute the direction (unit vector) that maximizes
the variance of the marginal distribution? Compute this direction and verify that it is
consistent with your plot.


