
PSYCH-GA.2211/NEURL-GA.2201 – Fall 2018
Mathematical Tools for Neural and Cognitive Science

Homework 2

Due: 11 Oct 2018
(late homeworks penalized 10% per day)

See the course web site for submission details. Please: don’t wait until the day before the due
date... start now!

1. Trichromacy. Load the file colMatch.mat in your MATLAB environment. This file con-
tains matrices and vectors related to the color matching experiment presented in class. In
particular, the variable P is an N × 3 matrix containing wavelength spectra for three “pri-
mary” lights, that could be used in a color-matching experiment. For these problems
N = 31, corresponding to samples of the visible wavelength spectrum from 400nm to 700nm
in increments of 10nm.

The function humanColorMatcher.psimulates a normal human observer in a color match-
ing experiment. The input variable light should contain the wavelength spectrum of a test
light (a 31-dimensional column vector). The variable primaries should contain the wave-
length spectra of a set of primary lights (typically, a 31 × 3 matrix, as for matrix P described
above). The function returns a 3-vector containing the observer’s “knob settings” - the in-
tensities of each of the primaries that, when mixed together, appear identical to the test
light. The function can also be called with more than one test light (by passing a matrix
whose columns contain 31-dimensional test lights), in which case it returns a matrix whose
columns are the knob settings corresponding to each test light.

(a) Create a test light with an arbitrary wavelength spectrum, by generating a random col-
umn vector with 31 positive components (use rand). Use humanColorMatcher to
“run an experiment”, asking the “human” to set the intensities of the three primaries in
P to match the appearance of the test light. Compute the 31-dimensional wavelength
spectrum of this combination of primaries, plot it together with the original light spec-
trum, and explain why the two spectra are so different, even though they appear the
same to the human.

(b) Now characterize the human observer as a linear system that maps 31-dimensional
lights to 3-dimensional knob settings. Specifially, run a set of experiments to estimate
the contents of a 3× 31 color-matching matrix M that can predict the human responses.
Verify on a few random test lights that this matrix exactly predicts the responses of the
function humanColorMatcher.

(c) The variable Cones contains (in the rows) approximate spectral sensitivities of the
three color photoreceptors (cones) in the human eye: Cones(1,:) is for the L (long-
wavelength, or red) cones, Cones(2,:) the M (green) cones, and Cones(3,:) the
S (blue) cones. Applying the matrix Cones to any light �l yields a 3-vector containing
the average number of photons absorbed by that cone (try plot(Cones’) to visualize
them!). Verify that the cones provide a physiological explanation for the matching ex-
periment, in that the cone absorptions are equal for any pair of lights that are perceptu-
ally matched. First, do this informally, by checking that randomly generated lights and
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their corresponding 3-primary matching lights produce equal cone absorptions. Then,
provide a few lines of matlab code that provide a more mathematical demonstration,
along with an extended comment explaining your reasoning using concepts from linear
algebra. [Hints for two possible approaches: (1) write math/code that computes cone
responses for any test light and then computes the weighted combination of primaries
that would produce the same cone responses - show that this is numerically the same
as the color-matching matrix; (2) convince yourself, and explain why, it is sufficient to
show that M and Cones have the same nullspace. Then use SVD to demonstrate that
this is true!]

(d) The function altHumanColorMatcher(light,primaries)simulates a color-deficient
human observer in a standard color matching experiment. (a) for a random test light,
compare the knob settings for this observer with those of the normal human. Do this for
several runs of altHumanColorMatcher(light,primaries). How do they differ?
(b) Compute cone absorptions for the test light, and for the mixture of three matching
primaries (by applying the Conesmatrix). Do this for both the normal human observer,
and for multiple runs of the abnormal observer. Try this for several different test lights.
How do the cone responses of the normal and abnormal observers differ? Can you offer
a diagnosis of the underlying cause of color deficiency in the abnormal observer?

2. 2D polynomial regression. Load the file regress2.mat into your MATLAB environment.
The matrix D contains 3 columns of data, which we’ll refer to as X, Y , and Z respectively.

(a) plot Z as a function of X and Y using surf [note: you’ll need to reshape the three
column vectors into square matrices]. Execute the command rotate3d on, and use
the mouse to rotate the 3D space and view the data at different angles.

(b) Fit the Z values with polynomials in X and Y , up to order 3: p0(X,Y ) = β0, p1(X,Y ) =
β0 + β1X + β2Y , p2(X,Y ) = β0 + β1X + β2Y + β3X

2 + β4XY + β5Y
2, etc. For each, (a)

plot the fitted surface (use surf again) and data points (use plot3) in the same graph,
and rotate it around to convince yourself that the fit is reasonable. (b) compute the
squared error for each element of Z , plot a histogram of these, and compute the mean
of the squared errors over all elements. (c) check how “important” each of the terms is.
In particular, measure the vector length of each term (e.g., ||β1X||). How much worse
would the mean squared error be if you left the “unimportant” terms out?

3. Constrained Least Squares Optimization. Load the file constrainedLS.mat into MAT-
LAB. This contains an N × 2 data matrix, data, whose columns correspond to horizontal
and vertical coordinates of a set of 2D data points, �dn. It also contains a 2-vector w. Consider
a constrained optimization problem:

min
�v

∑
n

(
�vT �dn

)2
, s.t. �vT �w = 1.

Thus, the constraint on �v is that it must lie on a line, perpendicular to �w, whose perpendicular
distance from the origin is 1/||�w||.

(a) Rewrite the optimization problem in matrix form. Then rewrite the problem in terms
of a new optimization variable, ṽ (a linear transformation of �v), such that the quantity
to be minimized is now ||ṽ||2. Note: you must also rewrite the constraint in terms of ṽ.
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(b) The transformed problem is one that you should be able to solve. In particular, you
must find the shortest vector ṽ that lies on the constraint line. Compute the solution for
ṽ, and plot the solution vector, the constraint line and the transformed data points.

(c) Transform the solution back into the original space (i.e., solve for �v). Plot �v, the original
constraint line, and the original data points. Is the optimal vector �v perpendicular to
the constraint line? On the same graph, plot the total least squares solution (i.e., the
vector that minimizes the same objective function, but that is constrained to be a unit
vector). Are the two solutions the same?

4. Principal components. Load the file PCA.mat into your MATLAB environment. You’ll find
a matrix M whose columns contain mean spike counts of 40 neurons from motor cortex,
measured over 50 temporal intervals (100msec each), recorded while a monkey makes a
stereotypical reaching movement.

(a) Plot all of the cell responses, as a function of time, on a single graph. This will look
pretty messy, but can you see any systematic behaviors amongst the cells?

(b) Compute the principal components of the 40-dimensional population responses. First,
center the data by subtracting the mean response mean(M) from every row of the ma-
trix (hint: you might find the function repmat helpful). Call this re-centered data ma-
trix M̃ . Then compute the eigenvectors and eigenvalues of M̃M̃T (alternatively, you
can compute the singular values of M̃ ). Plot the square root of the eigenvalues (or the
singular values). What do you think is the “true” dimensionality of the responses?

(c) Plot the significant eigenvectors, on top of each other, as functions of time. These should
look “well-behaved” - verify that the next eigenvector (the first “insignificant” one) is
not so well behaved.

(d) Plot the multi-dimensional temporal trajectory mapped out by the significant eigen-
vectors (i.e., plot a set of 50 connected points in a 2 or 3D space, using plot or plot3,
respectively). Describe what you see.


