
PSYCH-GA.2211/NEURL-GA.2201 – Fall 2018
Mathematical Tools for Neural and Cognitive Science

Homework 1

Due: 23 Sep 2018
(late homeworks penalized 10% per day)

See the course web site for submission details. Please: don’t wait until the day before the due
date... start now!

1. Testing for (non)linearity. Suppose, for each of the systems below, you observe the indicated
input/output pairs of vectors (or scalars). Determine whether each system could possibly
be a linear system. If so, provide an example of a matrix that is consistent with the observed
input/output pairs, and state whether you think that matrix is unique (i.e., the only matrix
that is consistent with the observations). If not, explain why.

System 1: 1 −→ [1, 4]
3 −→ [3, 6]

System 2: [2, 4] −→ [-6, 2]
[-1, -2] −→ [3, -1]

System 3: [2, 6] −→ 0
[-1, 3] −→ 2

System 4: 0 −→ [0.1, -0.1]

System 5: [1, -1] −→ [3, 2]
[1, 1] −→ [1, 2]
[3, 1] −→ [5, 3]

2. Inner product with a unit vector. Given unit vector û, and an arbitrary vector �v, write
(MATLAB) expressions for computing:

(a) the component of �v lying along the direction û,
(b) the component of �v that is orthogonal (perpendicular) to û, and
(c) the distance from �v to the component that lies along direction û.

Now convince yourself your code is working by testing it on random vectors û and �v (gener-
ate these using randn, and don’t forget to re-scale û so that it has unit length). First, do this
visually with 2-dimensional vectors, by plotting û, �v, and the two components described
in (a) and (b). (hint: execute ”axis equal” to ensure that the horizontal and vertical axes
have the same units). Then test it numerically in higher dimensions (e.g., 4) by writing (and
running) expressions to verify each of the following:

• the vector in (a) points in the same direction as û.

hw1 2

• the vector in (a) is orthogonal to the vector in (b).

• the sum of the vectors in (a) and (b) is equal to �v.

• the sum of squared lengths of the vectors in (a) and (b) is equal to ||�v||2.

3. Geometry of linear transformations

(a) Write a function plotVec2 that takes as an argument a matrix of height 2, and plots
each column vector from this matrix on 2-dimensional axes. It should check that the
matrix argument has height two, signaling an error if not. Vectors should be plotted as
a line from the origin to the vector position, using circle or other symbol to denote the
“head” (see help for function ’plot’). It should also draw the x and y axes, extending
from -1 to 1. The two axes should be equal size, so that horizontal units are equal to
vertical units (read the help for the function ’axis’).

(b) Write a second function vecLenAngle that takes two vectors as arguments and returns
the length (magnitude, or Euclidean-norm, not dimensionality) of each vector, as well as
the angle between them. Decide how you would like to handle cases when one (or
both) vectors have zero length.

(c) Generate a random 2x2 matrix M , and decompose it using the SVD, M = USV T . Now
examine the action of this sequence of transformations on the two “standard basis” vec-
tors, {ê1, ê2}. Specifically, use vecLenAngle to examine the lengths and angle between
two basis vectors ên, the two vectors V T ên, the two vectors SV T ên, and the two vectors
USV T ên. Do these values change, and if so, after which transformation? Verify this is
consistent with their visual appearance by plotting each pair using plotVec2.

(d) Generate a data matrix P with 65 columns containing 2-dimensional unit-vectors ûn =
[cos(θn); sin(θn)], and θn = 2πn/64, n = 0, 1, . . . , 64. [Hint: Don’t use a for loop!
Create a vector containing the values of θn.] Plot a single blue curve through these
points, and a red star (asterisk) at the location of the first point. Consider the action
of the matrix M from the previous problem on this set of points. In particular, apply
the SVD transformations one at a time to full set of points (again, think of a way to do
this without using a for loop!), plot them, and describe what geometric changes you see
(and why).

4. A simple visual neuron. Suppose a retinal neuron in a particular species of toad generates
responses that are a weighted sum of the (positive-valued) intensities of light that is sensed
at 7 localized regions of the retina. The weight vector is [1, 3, 4, 5, 4, 3, 1]. (a) Is this system
linear? If so, prove it. If not, provide a counterexample. (b) What unit-length stimulus vector
(i.e., vector of light intensities) elicits the largest response in the neuron? Explain how you
arrived at your answer. (c) What physically-realizable unit-length stimulus vector produces
the smallest response in this neuron? Explain.

5. Gram-Schmidt. A classic method for constructing an orthonormal basis is known as Gram-
Schmidt orthogonalization. First, one generates an arbitrary unit vector (e.g., by normalizing a
vector created with randn). Each subsequent basis vector is created by generating another
arbitrary vector, subtracting off the projections of that vector along each of the previously
created basis vectors, and normalizing the remaining vector.

Write a MATLAB function gramSchmidt that takes a single argument, N , specifying the
dimensionality of the basis. It should then generate an N×N matrix whose columns contain
a set of orthogonal normalized unit vectors. Try your function for N = 3, and plot the basis

hw1 3

vectors (you can use MATLAB’s rotate3d to interactively examine these). Check your
function numerically by calling it for an N larger than 3 and verifying that the resulting
matrix is orthonormal. Extra credit: make your function recursive – instead of using a for
loop, have the function call itself, each time adding a new column to the matrix of previ-
ously created orthogonal columns. To do this, you’ll probably need to write two functions (a
main function that initializes the problem, and a helper function that is called with a matrix
containing the current set of orthogonal columns and adds a new column until the number
of column equals the number of rows).

6. Null and Range spaces. Load the file mtxExamples.mat into your MATLAB world. You’ll
find a set of matrices named mtxN, with N = 1, 2.... For each matrix, use the SVD to: (a)
determine if there are non-trivial (i.e., non-zero) vectors in the input space that the matrix
maps to zero (i.e., determine if there’s a nullspace). If so, write a MATLAB expression that
generates a random example of such a vector, and verify that the matrix maps it to the zero
vector; (b) write a MATLAB expression to generate a random vector y that lies in the range
space of the matrix, and then verify that it’s in the range space by finding an input vector, x,
such that Mx = y.

