Mathematical Tools
for Neural and Cognitive Science

Fall semester, 2018

Probability & Statistics:
Estimation, inference, model-fitting

Estimation of model parameters (outline)

e How do I compute an estimate?
(mathematics vs. numerical optimization)

e How “good” are my estimates?
(classical stats vs. simulation vs. resampling)

e How well does my model explain the data?
Future data (prediction/generalization)?
(classical stats vs. resampling)

e How do I compare two (or more) models?
(classical stats vs. resampling)

The sample average

® Most common common form of estimator

® Value of a converges to true mean E(x), for all reasonable
distributions

e Variance of a converges to zero, as 0> /N

® Distribution p(a) converges to a Gaussian
(the “Central Limit Theorem”)




The Gaussian

1 (—p)?
pa) = —— e =

V2mo?

e parameterized by mean and SD (position / width)
e product of two Gaussians is Gaussian! [easy]

* sum of Gaussian RVs is Gaussian!
* central limit theorem: sum of many RVs is Gaussian! [harq]

Central limit for a uniform distribution...
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Central limit for a binary distribution...
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true density 700 samples

Measurement
(sampling)
\_/
Inference
true mean: [0 0.8] sample mean: [-0.05 0.83]
true cov: [1.0 -0.25 sample cov: [0.95 -0.23
-0.250.3] -0.230.29]

Point Estimates

e Estimator: Any function of the data, intended to provide
an estimate of the true value of a parameter

® Statistically-motivated estimators:

- =

= Maximum likelihood (ML): Z(d) = arg max p(d|z)
- Max a posteriori (MAP): #(d) = arg max p(x|d)
- Bayes estimator: #(d) = argmin E (L(x — %)|cf)
- Bayes least squares: #(d) = argmin E ((x - i)Q\J>
(special case) *
=E (m|dj

Estimator quality: Bias & Variance

* Mean squared error = bias"2 + variance

* Bias is difficult to assess (requires knowing the “true”
value). Variance is easier.

* Classical statistics generally aims for an unbiased
estimator, with minimal variance (“MVUE”).

* The MLE is asymptotically unbiased (under fairly
general conditions), but this is only useful if

- the likelihood model is correct
- the optimum can be computed
- you have lots of data

* More general view: estimation is about trading off bias
and variance, through model selection, “regularization”,
or Bayesian priors...




ML Estimates - discrete

* Binomial: p(nheud | m’phead) = ( ’:Z Jp;:ead (1_ phead )min

N n
phead - ;

e Poisson: p(k | l)
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ML Estimates - continuous
The N independent samples are x;,X,, X,
N
ML estimates are
X,
a= 2
N
N 2
z (xl. -x
=2t biased!
N
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Example: Estimate the bias of a coin




Bayes’ Rule and Estimation

Posterior Likelihood Prior

— (data | parameter value) p( araﬁ‘leter value)
p(parameter value |data) = p p ANy

p(data)

Nuisance normalizing term
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Likelihood: 1 head Likelihood: 1 tail
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Posteriors, p(H,T|x), assuming prior p(x)=1

T=0
)
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More heads >

H=0 1 2 3
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example

infer whether a coin is fair by flipping it repeatedly
here,  is the probability of heads (50% is fair)
1. are the outcomes of flips

Consider three different priors:
suspect fair suspect biased no idea
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previous posteriors
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previous posteriors
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- prior differences are ultimately overwhelmed by data




Confidence intervals

PDFs
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Classical “frequentist” statistical tests

Discrete,
Type of data? categorical Any counts <57
.Continuou

) o. Yes

Type of question? Chi-square tests, one
and two sample
ships Differences

Relation:

Y

nplo tost

2
Do you have dependent & Diferences '—”‘"“r
b h Fmax test or
s - Bartetts tost

Multple means
Single variable
Regression
analysis
How many groups?
Parametri
More than twor setated?
\Spearman's rank ¢ No 20

Mann-Whitney U or

T Ifsigniicant, do post hoctest:
’ Suxdents et ‘ Wilcoxon test | ‘

Bonferroni's, Dunn's, Tukey's, etc.

Statistical Rethinking, Richard McElreath
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Classical/frequentist approach - z

. H]: NZT imprOVeS IQ The 1Q distribution

* Null: Ho: it does nothing

* In the general population,
1Q is known to be
distributed normally with

* u=100

* 0=15

* We give the drug to 30

Probability

people and test their IQ.
55 70 85 100 115 130 145
1Q score

24




Probability

The z-test

The IQ distribution

85 100 115 130 145
1Q score

* =100 (Population mean)

« ¢ =15 (Population standard deviation)

* N =30 (Sample contains scores from
30 participants)

* x=108.3 (Sample mean)

* z= (x—p)/SE=(108.3-100)/SE
(Standardized score)

* SE=g/VN=15130=2.74

* Error bar/CI: +2 SE

*+ z=8.3/2.74=3.03

+ p=0.0012

* Significant?

* One- vs. two-tailed test
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What 1f the measured effect of NZT had been
half that?

Probability

The 1Q distribution

55 70 85 100 115 130 145
1Q score

* =100 (Population mean)

* o= 15 (Population standard
deviation)

* N=30 (Sample contains scores from
30 participants)

« X=104.2 (Sample mean)

* z= (x—w)/SE=(104.2-100)/SE

« SE=g/IN=15~30=2.74

e z=42/274=1.53

* p=0.061

« Significant?
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Significance levels

Are denoted by the Greek letter a.
In principle, we can pick anything that we

consider unlikely.

In practice, the consensus is that a level of 0.05 or
1 in 20 is considered as unlikely enough to reject
Ho and accept the alternative.

Alevel 0of 0.01 or 1 in 100 is considered “highly
significant” or really unlikely.
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Does NZT improve IQ scores or not?

Reality
Yes No
Type I error
c:a; é Correct O-erTor
S False alarm
=
g Type Il error
7 § p-error Correct
Miss
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Test statistic

* We calculate how far the observed value of the
sample average is away from its expected value.

* In units of standard error.
* In this case, the test statistic is

Z_)?—u_ X—u
SE o /N

Compare to a distribution, in this case z or N(0,1)
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Common misconceptions

Is “Statistically significant” a synonym for:
* Substantial

* Important

* Big

* Real

Does statistical significance gives the

* probability that the null hypothesis is true

* probability that the null hypothesis is false

* probability that the alternative hypothesis is true
* probability that the alternative hypothesis is false

Meaning of p-value. Meaning of CI.

30



Student’s #-test

o not assumed known

Use Y _\2
Z(Xi _x)
§ = &
N-1
Why N-1? s is unbiased (unlike ML version), i.e., E(s’)=0"

Test statistic is f= XMy
s/NN

Compare to ¢ distribution for CIs and NHST
“Degrees of freedom” reduced by 1 to N-1
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32
The ¢ distribution approaches the normal
distribution for large N
n=1
2
3
2
o
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The z-test for binomial data

Is the coin fair?

Lean on central limit theorem

Sample is n heads out of m tosses

Sample mean: p=n/m

Ho: p=0.5

Binomial variability (one toss): o= \/E , where g=1-p

A

Test statistic: S pP—p,

_,/poqo/m

Compare to z (standard normal)

For CI, use —
tz ,\NPq/m




Many varieties of frequentist univariate
tests

* x* goodness of fit

e 1 test of independence

* test a variance using x’

* F to compare variances (as a ratio)

* Nonparametric tests (e.g., sign, rank-order, etc.)

34

Bootstrapping

* “The Baron had fallen to the bottom of a deep lake.
Just when it looked like all was lost, he thought to
pick himself up by his own bootstraps”

[Adventures of Baron von Munchausen, by Rudolph Erich Raspe]

* A (re)sampling method for computing estimator
distribution (incl. stdev error bars or confidence
intervals)

* Idea: instead of running experiment multiple times,
resample (with replacement) from the existing
data. Compute an estimate from each of these
“bootstrapped” data sets.
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HEART ATTACK RISK | (New York Times, 27 Jan 1987]

FOUND TO BE CUT
BY TAKING ASPIR[N Histogram of bootstrap estimates:
LIFESAVING EFFECTS SEEN Boostralpped

Study Finds Benefit of Tablet
Every Other. Day Is Much
Greater Than Expected

The summary statistics in the newspaper article are very simple:

heart attacks subjects
(fatal plus non-fatal)
aspirin group: 104 11037
placebo group: 189 11034
7= Yoo = % @y =>with 95% confidence,

I this study can be believed, and its solid design makes it very
believable, the aspirin-takers only have 55% as many heart attacks 043 <6<0.7
as placebo-takers.
Of course we are not really interested in 8, the estimated ratio.
What we would like to know is , the true ratio

[Efron & Tibshirani "98]
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strokes  subjects

aspirin group: 119 11037

placebo group: 98 11034 (1.3)
For strokes, the ratio of rates is
119/11037
98/11034

It now looks like taking aspirin is actually harmful. However the

interval for the true stroke ratio # turns out to be

93 <6< 1.59 (1.5)

6= =121 (1.4)

with 95% confidence. This includes the neutral value § = 1, at
which aspirin would be no better or worse than placebo vis-a-vis
strokes. In the language of statistical hypothesis testing, aspirin
was found to be significantly beneficial for preventing heart attacks,
but not significantly harmful for causing strokes.

[Efron & Tibshirani "98]
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Point Estimates

® Estimator: Any function of the data, intended to provide
an estimate of the true value of a parameter

® The most common estimator is the sample average, used
to estimate the true mean of a distribution.

e Statistically-motivated estimators:

- Maximum likelihood (ML): #(d) = arg max p(d|z)
= Max a posteriori (MAP): i(dj = arg mgxp(m ‘J)

= Bayes estimator: #(d) = arg minE (L(x — :7:)|dj
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Signal Detection Theory
P(XIN)  P(x|S)
X
g
N
For equal, unimodal, symmetric distributions, ML decision
rule is a threshold function.
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Signal Detection Theory: Potential outcomes

P(xIN)

P(xIN)

\

N

threshold

P(xIS)

P(xIS)

x

Tumor
present

Tumor
absent

Doctor responds

Doctor responds

no’ yes’
miss hit

correct false
reject alarm




Internal response: probability of occurrence
curves

Probability

Internal response

N: noise only (tumor absent) spr-ead

S+N: signal plus noise (tumor present)

Discriminability (“d-prime”) is the normalized
separation between the two distributions

separation

43
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Signal Detection Theory: discriminability (d”)
High noise,
lots of overlap
Low noise,
not much overlap
45

Example applications of SDT

* Vision
* Detection (something vs. nothing)
« Discrimination (lower vs greater level of: intensity, contrast, depth, slant, size,
frequency, loudness, ...
* Memory (internal response = trace strength = familiarity)

* Neurometric function/discrimination by neurons (internal
response = spike count)

Criterion
£ N S+N
g
3
E]
2
&~
. A J
Say “no” Say “yes”

Internal response




Criterion
Criterion
Dlstrlbutmnhof internal Distribution of internal
:esponses when no responses when tumor
umor present
)
o
=
=
=
<
=
[=]
St
[
- N
-~ ~
Say “no” Say “yes”

Internal response
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Signal Detection Theory: Criterion

d=1

Hits = 97.5%
False alarms = 84%

Hits = 84%
False alarms = 50%

Hits = 50%
False alarms = 16%
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SDT: Gaussian case

z[p(CR)]  z[p(H)]

1 1
N S+N

l

1

I

1

1
N
0 c d x

d"=z[ p(H)]+z[ p(CR)] = z[ p(H)] - z[ p(FA)]

Probability

c=z[p(CR)] G(x;11,0) = ;e—(x—uﬁ/zgﬂ
~(c=d')*/2 ! \/EO'
o e

ﬁ_p(x:c\S+N)
Cope=clN) e
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ROC (Receiver Operating Characteristic)

Criterion #1

Probability

Internaxesponse
1

Hits

False Alarms
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50
ROC (Receiver Operating Characteristic)
Criterion #2
£
E
2
&
|
lntem‘l response
1
£
0
False Alarms !
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ROC (Receiver Operating Characteristic)

Criterion #3

RN

Probability

Internal r¢sponse

1

Hits

False Alarms




ROC (Receiver Operating Characteristic)

Criterion #4

Probability

Internal response

1

Hits

False Alarms
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ROC (Receiver Operating Characteristic)
d' =1 (lots of overlap) d' = 3 (not much overap)
ROC curves
False alarms
. 54
ROC: Gaussian case
z N S+N
.E
2
=
c
2
1
)
E
Ny
0.0 05 1.0 2 2 0 1

False alarms z[p(FA)]




Decision/classification in multiple dimensions

® Data-driven:
e Fisher Linear Discriminant (FLD) - maximize d’
® Support Vector Machine (SVM) - maximize margin

® Statistical:
e ML/MAP/Bayes under a probabilistic model
® ¢.g.: Gaussian, equal covariance (same as FLD)
® ¢.g.: Gaussian, unequal covariance (QDA)

® Examples:
® Visual gender identification
® Neural population decoding

55
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Multi-D Gaussian densities
(z) = P
P = Voro?
In
(@) = L —E-mTC @2
P = (2m)N|C] mean: [0.2,0.8]
cov: [1.0-0.3;
203 04]
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Linear Classifier

Find unit vector w (“discriminant”) that best separates two distributions

.
.h. L o " .
oo o iscriminant
oo \ . data2
vl e

e
oe3d ;o:.o
°%, . e

. ~

. ~

histogram of projected values

~
~

Simplest choice: difference of means




Fisher Linear
Discriminant

N 2
max [wT(#A - uB)]
o [WTCa + 0T Cpw)

W=DV (us—pp), where VD*VT =C,+Cp
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Support Vector Machine

Maximize the “margin” (gap between data sets)

find largest m, and {u,b} s.t. ¢;(wT& —b) >m, Vi
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Gaussian ML classifier

For equal covariances: Linear
For different covariances: Quadratic (three possible geometries)

Class 1 3, Class 1
4 Class 2
T / o s,
§ 1, 5 §
I 3 2 o
5 5
2 Class 2 2
¥+ Neuron 1 Neuron 1
~
/%s 1)
Class2_~ "
o o /.
s 8|/
E \ H =
2| Class 1\ | 2 K—///X)
Neuron 1 Neuron 1

[figure: Pagan et al. 2016]
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Example: Gender identification

0200 face images (100 male, 100 female)
e Adjusted for position, size, intensity/contrast
el abeled by 27 human subjects

[Graf & Wichmann, NIPS*03]
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Linear classifiers

Four linear classifiers trained on subject data

62

Model validation/testing

® Cross-validation: Subject responses [%
correct, reaction time, confidence] are
explained

- very well by SVM
- moderately well by RVM / FLD
- not so well by Prot

o Curse of dimensionality strongly limits this
result. A more direct test: Synthesize
optimally discriminable faces...
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Subtract classifier Add classifier

SVM

Prot

FLD

[Wichmann, Graf, Simoncelli, Biilthoff, Scholkopf, NIPS*04]
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1 1
0.25 0.5 10 20 4.0 8.0

Amount of classifier image added/subtracted
(arbitrary units)

[Wichmann, Graf, Simoncelli, Biilthoff, Scholkopf, NIPS*04]
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Population decoding

Independent Poisson responses Tuning curves, hn(s)
[e.g., Seung & Sompolinsky, 1993]
N . .
h"(syn eihn(.S) M
p(7ls) = H -
n=1 " K
SVM
N =20 from 60 . -
5 0.99 — shuffled-SVM
(7] -
2 o -
5 —
i 0.95 -/./' indep-Poisson
Z 0904 / —
5 o
£ 075 %
0.50 14 ”

0 5 10 15 20 25 30
Orientation difference (degrees)

Graf, Kohn, Jazayeri, Movshon, 2011
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Bayesian Model Comparison

® [s the coin fair? Compared to what?
® Point hypotheses: M| :p=p =05 M,:p=p,=0.6
p(D|M)P(M,) _ p(D|M)P(p)

p(D) p(D)

p(M,| D)=

Assuming equal priors over models the Bayes factor is

p(M,|D) _ p(D|M)P(M,) _ p(D|M,)P(p)
p(M,|D)  p(D|M,)P(M,) p(D|M,)P(p,)

68

Bayesian Model Comparison

® [s the coin fair? Compared to what?
® Alternative hypothesis: M, :p=p =0.5 M,:p#0.5

_p(D|M,)p(M,)
(D)

1
= [ PPy | DIP(Py) P,
1
JO p(D | M2 ’pcoin )p(pcoin)dpcoinp( M2)
p(D)

Compute Bayes factor as before.

p(M,|D)
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Continuous/Gaussian:
Localization

I find that x #0. Is that convincing? Is the
apparent bias real?

70

Continuous/Gaussian:
Localization

Take N independent samples from the
distribution, these act like draws from N
independent, identically distributed (IID) RVs:

X, X, X,

71

Continuous/Gaussian:
Localization

The N independent samples are x,x,, --x,

X,

i

. N
ML estimates are z

i—1

a=

=

22

-1

N-1

i(xi_f)z
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Continuous/Gaussian:
Localization

MAP estimates of the mean are based on the
posterior, a product of Gaussians (assuming a
Gaussian) prior. Thus there is shrinkage toward
the prior.

Model comparison for hypotheses about the
mean (variance assumed known) are similar to
the binomial example.
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The Gaussian
o
() 1 _ (w—@?
plr) = e 20
V2ro? lll
* parameterized by mean and stdev (position / width)
* joint density of two indep Gaussian RVs is circular! [easy]
e product of two Gaussian dists is Gaussian! [easy]
¢ conditionals of a Gaussian are Gaussian! [casy]
* sum of Gaussian RVs is Gaussian!
¢ all marginals of a Gaussian are Gaussian!
* central limit theorem: sum of many RVs is Gaussian! [hard]
* most random (max entropy) density with this variance!
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Product of Gaussian distributions is Gaussian
y=z+n, =~ N(ug,0z), n~N(0,o0,)

p(zly) o< plylz)p(z)




Product of Gaussian distributions is Gaussian

y=z+mn, =~ N(uz,0z), n~N(0,0,)

p(zly) o plylz)p(x)

Completing the square shows that this
posterior is also Gaussian, with

R 11
=\t
n €T
Y, e 11
(502 /G
(a;e, o2) ) \o2 " a2

(average, weighted by inverse variances!)
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77
The Gaussian
o
1 _(e=w?
)= e !
o m
* parameterized by mean and stdev (position / width)
* joint density of two indep Gaussian RVs is circular! [easy]
e product of two Gaussian dists is Gaussian! [easy]
¢ conditionals of a Gaussian are Gaussian! [casy]
* sum of Gaussian RVs is Gaussian!
¢ all marginals of a Gaussian are Gaussian!
* central limit theorem: sum of many RVs is Gaussian! [hard]
* most random (max entropy) density with this variance!
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Multi-D Gaussian densities

m
1 —(@-p)Tc Y (@-pm)/2 ‘

p(@) = NGl € mean: [0.2,0.8]
cov: [1.0-0.3;
-0.3 04]




F~N(i,C), let P=C"' (the “precision” matrix)
p(xi]ze = a) o e~ B [Pule—pm)* +2Pi @1 =) (a—p2) +.. ]
8*%[PuZ?Jr?(Plz(a*ltz)*f’uﬂl)fﬁr---]

e—%(ml—plﬁ—%(a—uz))Pn (wl—uﬁ—%(u—ﬂﬂ)ﬁ-m

Py
. ) H=M1+P7(a—ﬂ2)
Gaussian, with: 11
a1
Py

Conditional:

Marginal: s
o) = [ p(2) deo
/\ Gaussian, with: l; - om
= Cn

[

WHWHIEL

[on board]
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Generalized marginals of a Gaussian
7 ~ N(fi, Cy)
z=aT%
p(z) is Gaussian, with:
ey = ﬂTﬁI
af = aTc,a
%
W
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Bivariate statistics

* Covariance of Xand Y: Cov(X,Y)= E((X—IUX)(Y—,UY))
* Correlation of X and Y: _ Cov(X,Y)
Pow=—" -
O-XO—Y

N
* Unbiased estimators from samples: Z(X,- -X )(y,. —)7)

N

S-2)5-5)  Elx-5)0-3)

i=




Correlation: summary of data cloud shape

r=0.30

Y (normalized)

-3 -2 -1 0 1 2 3
X (normalized)
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Correlation and regression

200 : TLS (largest

.., ., cigenvector)

« 150 '
g 100 \ Least-squares
§ . regression
50|
0 « .
55 70 85 100 115 130 145 Regression

nQ to the mean”

83
Correlation captures dependency,
but not “shape”
S e — e~ L
84



Correlation and regression

corr=—0.80 corr=—0.40 corr=0.00 corr=0.40 corr=0.80

5 5 5 5 5
-5 -5 5 - 15 5
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86
Variance partitioning and model assessment
il 2
S total = Z(yz - y) = SSexplained + SSresidual
i=1
N 2
SSexplained = Z(yz - y)
i=1
Y 2
SSresidual = z(y, - yl)
i=1
: . 2 SSex lained
Coeff. of determination > = ——-——
SStotal
. . 87
Correlation between variables does -

not uniquely indicate their relationship

* Anscombe’s Quartet
Each dataset has the same summary statistics (mean, standard deviation,
correlation), and the datasets are clearly different, and visually distinct.




More extreme
examples !

AR LS

g <2 St

Lo rentdion Aeges o o

X Mean: 54.26
Y Mean: 47.83

X SD : 16.76
Y SD : 26.93
Corr. : -0.06

hitps://ww
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L

A
|

S P

oo

i .
v e

| %
Independence implies uncorrelated,
but uncorrelated doesn’t imply independent!
0.0
£
‘,&i‘gya"
90
Lack Of_ . ' N=3 " N=16
correlation is :
favored in N>3 o 0
dimensions *
! ‘2 N=4 Z.(M N=32
Null Hypothesis: 08 009
Distribution of o 002
normalized 02 oo
dOt prOduCt Of -1 -05 05 1 -1 -0.5 ] 05 1
pairs of o o
Gaussian vectors 002 N=8 006 N=64
in N dimensions: 00ty vos
(1 _ d2) N;3 0.005 002
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. . . 1 1
Distribution of o 2D o 6D
angles of pairs of 0
Gaussian vectors o« o4
0.2] 0.2]
0 1 2 3 0 1 2 3
0. 1
06 3D 10D
1
0.4/
i 02 0.5)
sin(theta)?(N-2)
0 1 2 3 0 1 2 3
0.8]
0 4D 15 18D
0.4 !
0.2) 0.5
0 1 2 3 0 1 2 3
Per capita cl‘l‘cc‘sg ‘co‘nsumptinn - 92
Nevenheless’ Number of people who died by becoming tangled in their bedsheets I

one can find -
correlation if .

one looks for it!

Worldwide non-commercial space launches
relates with

Sociology doctorates awarded (US)

Letters in Winning Word of Scripps National Spelling Bee

Number of people killed by venomous spiders

e

http:/www.tylervigen.com/spurious-correlations

Correlation does not imply causation

* Beware selection bias

* Correlation does not provide a direction for causality.
For that, you need additional (temporal) information.

* More generally, correlations are often a result of
hidden (unmeasured, uncontrolled) variables...

H
Example: conditional independence:

P(AB1H) =p(Al H) p(BIH) VRN

N\ .
- B

[on board: In Gaussian case, connections are explicit in the Precision Matrix]
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Another example: Simpson’s paradox

expression of gene B

expression of gene A

94
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. . .
Milton Friedman’s Thermostat
. True interactions:
O = outside temperature (assumed cold) -
I = inside temperature (ideally, constant) o — .
E = energy used for heating 0 E
A Jr
Statistical interactions, P=C-': .
Statistical observations: . |
e O and I uncorrelated @ — .
e ] and E uncorrelated 0 E
® O and E anti-correlated .
|
Some nonsensical conclusions:
e O and E have no effect on I, so shut off heater to save money!
e [ is irrelevant, and can be ignored. Increases in E cause decreases in O.
Statistical summary cannot replace scientific reasoning/experiments!
96

Summary: Correlation misinterpretations

® Correlation does not imply data lie on a line
(subspace), with noise perturbations

® Correlation => dependency, but lack of correlation
does not imply independence

® Correlation does not imply causation (temporally, or
by direct influence/connection)

e Correlation is a descriptive statistic, and cannot
replace the need for scientific reasoning/experiment!




Taxonomy of model-fitting errors

® Optimization failures (e.g., local minima)
[convex relaxation, test with simulations]

e Overfitting (too many params, not enough data)
[use cross-validation to select complexity, or to
control regularization]

® Experimental variability (due to finite/noisy
measurements) [use math/distributional
assumptions, or simulations, or bootstrapping]

® Model failures

97
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Optimization...
Heuristics,
exhaustive search,
(pain & suffering)
Iterative descent,
(possible local
minima)
Quadratic
Iterative descent,
unique
Closed-form,
and unique
99
M=0 M=1 M=2 M=3
40 40 40 40
L] L]
20 20 20 20
LJ ..
of =~°° 0 °* 0 0
-20 -20 -20 -20
0 5 10 0 5 10 0 5 10 0 5 10
M=4 M=5 M=6 M=7
40 40 40 40
20 20 20 20
0 0 0 0
-20 -20 20 -20



Cross-validation

A resampling method for constraining a model. Widely used to
identify/avoid over-fitting.

Using cross-validation to select the
degree of a polynomial model:

(1) Randomly partition data into 10°
a “training” set, and a “test” set. —_ ::‘s't”:r:g:'
(2) Fit model to training set. . ——true degree
Measure error on test set. 10 true error
(3) Repeat (many times)

§ 10°
(4) Choose model that
minimizes the cross-validated o
(test) error K

"
0% 5 10 15 20

polynomial degree
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Ridge regression
(a.k.a. Tikhonov regularization)
Ordinary least squares regression:
arg min ‘ |g‘ _ X/B" |2 e OLS estimate
B estimate
“Regularized” least squares regression:
AT 3112 P
arg Hlﬁln ‘ |y - Xﬁ‘ | + /\| ‘B| | 7th-order polynomial regression:
* data
Equivalent formulation: MAP estimate, ¢ e
assuming Gaussian likelihood & prior! 8
2
A _ . 4
/Bridge = (XTX + )\I) 1XTy o
-1
Choose lambda by cross-validation: ~
0 0.2 0.4 0.6 0.8 1
102

0.8

0.6
I

0.4

0.2

---- Linear MSE
- — Ridge MSE
- —— Ridge Bias"2
s - —— — Ridge Var
T T T T T
o 5 10 15 20 25
n
Linear regression: Ridge regression, at its best:
Squared bias = 0.006 Squared bias ~ 0.077
Variance ~ 0.627 Variance ~ 0.403
Pred. error ~ 1+ 0.006 + 0.627  Pred. error =~ 1+ 0.077 + 0.403
~ 1.633 ~ 1.48

from http://www.stat.cmu.edu/~ryantibs/datamining/




L regularization
(a.k.a. least absolute shrinkage and selection operator - LASSO)

arg min |7 — X B> +
s L1 norm (still convex)

Using an absolute error regularization term promotes
binary selection of regressors:

From Haste, Tibshirani, Wainwright 2015

103
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Solving for LASSO in 1D: soft-thresholding
arg min |7 - 511 + |3 A
=212 ﬁOLS
assume ||Z]|° =1
. ‘.
[solution on board] ﬂLASSO
Bri(lg(t
iz
A2
105

Bias reduction using the “relaxed LASSO™: e
Re-solve for non-zero coefficients after
eliminating unused regressors

B,

“relaxed LASSO” /¢
|

\

LASSO %

B,




LASSO vs. Ridge regression

Table 2.1 Crime data: Crime rate and five predictors, for N =50 U.S. cities.

106

city | funding hs not-hs college colleged crime rate
1 40 T4 11 31 20 478
2 32 72 11 43 18 494
3 57 70 18 16 16 643
4 31 71 11 25 19 341
5 67 72 9 29 24 773
6‘(! 66 67 26 lVH 16 940
Lasso Ridge Regression
o | // funding o | funding
e B, o B
24 e 79 \i "
00 02 04 06 08 10 00 02 04 06 08 10
181/1311x e
A [From Hastie, Tibshirani, Wainwright 2015]
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Clustering
* K-Means (Lloyd, 1957)
* “Soft-assignment” version of K-means
(a form of Expectation-Maximization - EM)
* In general, alternate between:
1) Estimating cluster assignments
2) Estimating cluster parameters
* Coordinate descent: converges to (possibly local) minimum
* Need to choose K (number of clusters)
108

K-Means

« Estimating cluster assignments: given class centers,
assign each point to closest one.

Soap bubbles:
I

* Estimating cluster parameters: given assignments, re-
estimate the centroid of each cluster.




K-means example
Here X; € R%, n =300, and K =3

Initial centers. Heration 1 Heration 2

[from R. Tibshirani, 2013]
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Warning: Initialization matters. ..

Three solutions obtained with different random starting points:

110

- woo&D 1 M:&c 1 0000&5
fZG o 0% 2 8, oﬁ;&q‘; 3 as‘:g"
LRI (P IR AP 0 o5 LN L
31 .0 ELR T e R A ER IR 2 AT
S0, @ o S Soo, gm0 S 0o Coo @ w2 S
o o e gee To 50070 | g loB S %0 RSP S R Y o W A
s 9 ) %% o, % Dl SONN L B N2t P
L ! ! = ! ! F— : .
o0 0s 1o s 0 os o s o0 os 10 s
[from R. Tibshirani, 2013]
K-means failures
Non-convex/non-round-shaped clusters
%‘\g‘
ay
x p

Picture courtesy: Christof Monz (Queen Mary, Univ. of London)




ML for discrete mixture of Gaussians

P(Fnlanies fiis Ak) Z Onk _ —(@n—fin) AL (@ —Fik) /2

kV ‘Ak‘

Ank = assignment probability

{fik, At} =mean/covariance of class n

Intuition: alternate between maximizing these two sets of variables
(“coordinate descent”)
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Different cluster analysis results on "mouse" data set:
Original Data k-Means Clustering EM Clustering
08 08 :;;“‘.7 "
or o ‘.‘:?‘“,
0s 06 ':-
05 ostx o
03 03
01ﬂ 01 02 03 04 05 06 07 08 09 1 01ﬂ 01 02 03 04 05 06 0.7 09‘09 1 0]0 01 02 03 04 05 06 0.7 08’09 1
[wikipedia]
114

Application to neural “spike sorting”

Standard solution:
1. Threshold to find segments containing spikes
2. Reduce dimensionality of segments using PCA

3. Identify spikes using clustering (e.g., K-means)

Note: Fails for overlapping spikes!




Failures of clustering for near-synchronous spikes

synchronous spiking

A BEuAe

PC 1 projection

[Pillow et. al. 2013]
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Simulated data [Quiroga ct. a1. 2004]
clustering (K-means) CBP

(o]

18]

a

9%2‘:3 positive © ° °°
PC 1 PC 1
[Ekanadham et al, 2014]
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mathematical manipulation




