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Estimation of model parameters (outline)

• How do I compute an estimate?  
(mathematics vs. numerical optimization) 

• How “good” are my estimates?  
(classical stats vs. simulation vs. resampling)  

• How well does my model explain the data?   
Future data (prediction/generalization)?  
(classical stats vs. resampling) 

• How do I compare two (or more) models?  
(classical stats vs. resampling)
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• Most common common form of estimator 

• Value of a converges to true mean E(x), for all reasonable 
distributions 

• Variance of a converges to zero, as   

• Distribution p(a) converges to a Gaussian  
(the “Central Limit Theorem”)

The sample average

a(~x) =
1

N

NX

n=1

xn

Mea

Inf
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The Gaussian

• parameterized by mean and SD (position / width)
• product of two Gaussians is Gaussian!   [easy] 

• sum of Gaussian RVs is Gaussian!     [moderate]
• central limit theorem: sum of many RVs is Gaussian!   [hard]
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Central limit for a uniform distribution...

10k samples, uniform density (sigma=1)
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true mean: [0 0.8]
true cov: [1.0 -0.25

-0.25 0.3]

sample mean: [-0.05 0.83]
sample cov: [0.95 -0.23

-0.23 0.29]

700 samples

Measurement
(sampling)

Inference

true density
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Point Estimates
• Estimator: Any function of the data, intended to provide 

an estimate of the true value of a parameter

• Statistically-motivated estimators:

- Maximum likelihood (ML):  

- Max a posteriori (MAP):

- Bayes estimator:

- Bayes least squares:  
(special case)

x̂(~d) = argmin
x̂

E
⇣
L(x� x̂)|~d

⌘
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Estimator quality: Bias & Variance
• Mean squared error = bias^2 + variance 
• Bias is difficult to assess (requires knowing the “true” 

value). Variance is easier. 
• Classical statistics generally aims for an unbiased 

estimator, with minimal variance (“MVUE”). 
• The MLE is asymptotically unbiased (under fairly 

general conditions), but this is only useful if 
- the likelihood model is correct 
- the optimum can be computed 
- you have lots of data  

• More general view: estimation is about trading off bias 
and variance, through model selection, “regularization”,  
or Bayesian priors…
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• Binomial:  
 

• Poisson:

ML Estimates - discrete

p nhead |m, phead( ) = m
n

⎛

⎝⎜
⎞

⎠⎟
phead
n 1− phead( )m−n

p̂head =
n
m

p k |λ( ) = λ ke−k

k!
λ̂ = k
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The N independent samples are

ML estimates are

x1,x2 ,!xN

µ̂ =
xi

i=1

N

∑
N

σ̂ 2 =
xi − x( )2

i=1

N

∑
N

biased!

ML Estimates - continuous
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Example: Estimate the bias of a coin
12
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Bayes’ Rule and Estimation

p(parameter value | data) = p(data | parameter value)p(parameter value)
p(data)

Posterior PriorLikelihood

Nuisance normalizing term
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Likelihood: 1 head Likelihood: 1 tail
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More heads

M
ore tails

T=0

1

2

3

2 31H=0

Posteriors, p(H,T|x), assuming prior p(x)=1 16

example
infer whether a coin is fair by flipping it repeatedly 
here, x is the probability of heads (50% is fair) 
y1...n are the outcomes of flips 

Consider three different priors: 
 suspect fair suspect biased no idea
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 prior fair prior biased prior uncertain

   X likelihood (heads)

   = posterior
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   previous posteriors

   X likelihood (heads)

   = new posterior
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   previous posteriors

   X likelihood (tails)

   = new posterior
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Posteriors after observing 75 heads, 25 tails 

àprior differences are ultimately overwhelmed by data
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PDFs

CDFs, and 95% confidence intervals

10H / 5T 20H / 10T2H / 1T

.975

.025
.19 .93 .49 .80

Confidence intervals
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Statistical Rethinking, Richard McElreath

Classical “frequentist” statistical tests 23

Classical/frequentist approach - z

• H1: NZT improves IQ 
• Null: H0: it does nothing 
• In the general population, 

IQ is known to be 
distributed normally with  

• µ = 100 
• σ = 15 
• We give the drug to 30 

people and test their IQ.
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• µ = 100 (Population mean) 
• σ = 15 (Population standard deviation) 
• N = 30 (Sample contains scores from 

30 participants) 
• x = 108.3 (Sample mean)  
• z =  (x – µ)/SE = (108.3-100)/SE 

(Standardized score) 
• SE = σ / √N = 15/√30 = 2.74 
• Error bar/CI: ±2 SE  
• z = 8.3/2.74 = 3.03 
• p = 0.0012 
• Significant? 
• One- vs. two-tailed test  

The z-test 25

• µ = 100 (Population mean) 
• σ = 15 (Population standard 

deviation) 
• N = 30 (Sample contains scores from 

30 participants) 
• x = 104.2 (Sample mean)  
• z =  (x – µ)/SE = (104.2-100)/SE 
• SE = σ / √N = 15/√30 = 2.74  
• z = 4.2/2.74 = 1.53 
• p = 0.061 
• Significant?  

What if the measured effect of NZT had been 
half that?

26

Significance levels

• Are denoted by the Greek letter α. 
• In principle, we can pick anything that we 

consider unlikely.  
• In practice, the consensus is that a level of 0.05 or 

1 in 20 is considered as unlikely enough to reject 
H0 and accept the alternative. 

• A level of 0.01 or 1 in 100 is considered “highly 
significant” or really unlikely. 

27



Does NZT improve IQ scores or not?
Reality

Yes No

Si
gn

ifi
ca

nt
?

Ye
s

N
o

Correct
Type I error 
α-error  
False alarm

Correct
Type II error 
β-error  
Miss
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Test statistic

• We calculate how far the observed value of the 
sample average is away from its expected value. 

• In units of standard error. 
• In this case, the test statistic is 

• Compare to a distribution, in this case z or N(0,1)

z = x − µ
SE

= x − µ
σ / N

29

Common misconceptions
Is “Statistically significant” a synonym for: 
• Substantial 
• Important 
• Big 
• Real 

Does statistical significance gives the 
• probability that the null hypothesis is true 
• probability that the null hypothesis is false 
• probability that the alternative hypothesis is true  
• probability that the alternative hypothesis is false 

Meaning of p-value. Meaning of CI.

30



Student’s t-test
• σ not assumed known 
• Use 
 
 

• Why N-1? s is unbiased (unlike ML version), i.e.,  

• Test statistic is  
 

• Compare to t distribution for CIs and NHST 
• “Degrees of freedom” reduced by 1 to N-1 

s2 =
xi − x( )2

i=1

N

∑
N −1

E(s2 ) =σ 2

t =
x − µ0
s / N
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The t distribution approaches the normal 
distribution for large N

x	(z	or	t)

Pr
ob

ab
ili
ty
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The z-test for binomial data

• Is the coin fair? 
• Lean on central limit theorem 
• Sample is n heads out of m tosses 
• Sample mean: 
• H0: p = 0.5 
• Binomial variability (one toss): 
• Test statistic:  
 

• Compare to z (standard normal) 
• For CI, use  

p̂ = n / m

σ = pq ,  where q = 1− p

z =
p̂ − p0
p0q0 / m

±zα /2 p̂q̂ / m
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Many varieties of frequentist univariate 
tests

•       goodness of fit 
•       test of independence 
• test a variance using  
• F to compare variances (as a ratio) 
• Nonparametric tests (e.g., sign, rank-order, etc.)

χ 2

χ 2

χ 2
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Bootstrapping
• “The Baron had fallen to the bottom of a deep lake.  

Just when it looked like all was lost, he thought to 
pick himself up by his own bootstraps”  
[Adventures of Baron von Munchausen, by Rudolph Erich Raspe] 

• A (re)sampling method for computing estimator 
distribution (incl. stdev error bars or confidence 
intervals) 

• Idea: instead of running experiment multiple times, 
resample (with replacement) from the existing 
data.  Compute an estimate from each of these 
“bootstrapped” data sets.  
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[Efron & Tibshirani ’98]

[New York Times, 27 Jan 1987]

Histogram of bootstrap estimates:
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[Efron & Tibshirani ’98]

37

data

{ ⃗x n}

probabilistic 
model

pθ( ⃗x )

Measurement

Inference
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• Estimator: Any function of the data, intended to provide 
an estimate of the true value of a parameter

• The most common estimator is the sample average, used 
to estimate the true mean of a distribution.

• Statistically-motivated estimators:

- Maximum likelihood (ML):  

- Max a posteriori (MAP):

- Bayes estimator:

Point Estimates

x̂(~d) = argmin
x̂

E
⇣
L(x� x̂)|~d

⌘
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P(x|N) P(x|S)

Signal Detection Theory

For equal, unimodal, symmetric distributions, ML decision 
rule is a threshold function.

“S”
“N”

x
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Signal Detection Theory: Potential outcomes

threshold

Tumor 
present

Tumor
absent

Doctor responds
“yes”

Doctor responds
“no”

P(x|N) P(x|S)

P(x|N) P(x|S)

x

x

correct 
reject

false
alarm

hitmiss
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N S+N

Internal response

Pr
ob

ab
ili

ty

d’

Internal response: probability of occurrence 
curves

N: noise only (tumor absent) 

S+N: signal plus noise (tumor present) 
Discriminability (“d-prime”) is the normalized 
separation between the two distributions

d’ = 
separation

spread
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Signal Detection Theory: discriminability (d’)

44

N S+N

Criterion

Internal response

Pr
ob

ab
ili

ty

Say “yes”Say “no”

• Vision 
• Detection (something vs. nothing) 
• Discrimination (lower vs greater level of: intensity, contrast, depth, slant, size, 

frequency, loudness, ... 

• Memory (internal response = trace strength = familiarity) 
• Neurometric function/discrimination by neurons (internal  

    response = spike count)

Example applications of SDT
45



Criterion

Internal response

Pr
ob

ab
ili

ty
Criterion

Say “yes”Say “no”

Distribution of internal 
responses when no 
tumor

Distribution of internal 
responses when tumor 
present
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Signal Detection Theory: Criterion 
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SDT: Gaussian case

N S+N

x

Pr
ob

ab
ili

ty

0 ′dc

c = z[p(CR)]

′d = z[p(H )]+ z[p(CR)] = z[p(H )]− z[p(FA)]

z[p(CR)] z[p(H)]

G(x;µ,σ ) = 1
2πσ

e−(x−µ )
2 /2σ 2

β = p(x = c | S + N )
p(x = c | N )

= e
−(c− ′d )2 /2

e−c
2 /2
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Internal response

Pr
ob

ab
ili

ty

False Alarms

H
its

0 1

1

0

ROC (Receiver Operating Characteristic)

Criterion #1
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Internal response

Pr
ob

ab
ili

ty

False Alarms

H
its

0 1

1

0

Criterion #2

ROC (Receiver Operating Characteristic)
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Internal response

Pr
ob

ab
ili

ty

False Alarms

H
its

0 1

1

0

Criterion #3

ROC (Receiver Operating Characteristic)
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Internal response

Pr
ob

ab
ili

ty

False Alarms

H
its

0 1

1

0

Criterion #4

ROC (Receiver Operating Characteristic)
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ROC (Receiver Operating Characteristic)
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N S+N

z[p(FA)]

z[
p(

H
)]

ROC: Gaussian case

Pr
ob

ab
ili

ty

c
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Decision/classification in multiple dimensions

• Data-driven:   
• Fisher Linear Discriminant (FLD) - maximize d’ 
• Support Vector Machine (SVM) - maximize margin 

• Statistical: 
• ML/MAP/Bayes under a probabilistic model 
• e.g.: Gaussian, equal covariance (same as FLD) 
• e.g.: Gaussian, unequal covariance (QDA) 

• Examples: 
• Visual gender identification 
• Neural population decoding
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mean:  [0.2, 0.8]
cov:  [1.0 -0.3;

 -0.3  0.4]

Multi-D Gaussian densities
56

Find unit vector ŵ (“discriminant”) that best separates two distributions

Linear Classifier

Simplest choice: difference of means
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max

ŵ

⇥
ŵT

(µA � µB)
⇤2

[ŵTCAŵ + ŵTCBŵ]

ŵ = D�1V T (µA � µB), where V D2V T = CA + CB

Fisher Linear 
Discriminant
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Support Vector Machine 

find largest m, and {ŵ, b} s.t. ci(ŵ
T
~xi � b) � m, 8 i

ŵ

ci = 1

ci = �1

Maximize the “margin” (gap between data sets)
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Gaussian ML classifier
2294 M. Pagan, E. Simoncelli, and N. Rust

Figure 1: The nQDA framework. (a) Optimal quadratic discrimination bound-
aries (black lines) for four example pairs of population response distributions.
Hypothetical class distributions are each multivariate gaussian (indicated by
red and gray elliptical regions), with means µ1 and µ2 and covariances !1 and
!2. Top left: A scenario in which the means of the two classes differ and the
covariances are matched. In this special case, the optimal classifier is linear.
Top right: A scenario in which the means of the two classes are similar and a
linear classifier alone is an ineffective decision boundary. Instead, the optimal
classifier uses a pair of parabolic boundaries. Bottom left: An example with dif-
fering mean and covariance, yielding a single parabolic boundary. Bottom right:
An example yielding an elliptical boundary. (b) Depiction of the nQDA model,
which implements the optimal quadratic classifier (equations 2.3 and 2.4) as an
LN-LN model (see equation 2.6). The first LN transformation is achieved with
a bank of linear filters, with all but the first followed by a squaring nonlinearity.
The outputs of these individual LN units are combined via a weighted sum,
followed by a threshold function that determines the class membership.

where Q is an N-by-N symmetric matrix. As with the linear classifier, the
class assignment is determined by the sign of this function. Similar to linear
classifiers, multiple methods exist for fitting the parameters of a quadratic
classifier (Kendall, 1966; Hofmann, Schölkopf, & Smola, 2008). When the
population responses are gaussian distributed the maximum likelihood
solution (known as quadratic discriminant analysis, QDA; Kendall 1966)
corresponds to

Q = 1
2

·
(
!−1

2 − !−1
1

)
; m = !−1

1 µ1 − !−1
2 µ2,

k =−1
2

(
log

∣∣!1

∣∣ − log
∣∣!2

∣∣ + µT
1 !−1

1 µ1 − µT
2 !−1

2 µ2
)
. (2.4)

The incorporation of the quadratic term creates a more pow-
erful classifier, which exploits differences in covariance, generally

[figure: Pagan et al. 2016]

For equal covariances: Linear 
For different covariances: Quadratic (three possible geometries)  
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•200 face images (100 male, 100 female)
•Adjusted for position, size, intensity/contrast
•Labeled by 27 human subjects

[Graf & Wichmann, NIPS*03] 

Example: Gender identification
61

Linear classifiers

SVM RVM Prot FLD trained
on

→
W

true
data

→
W

subj
dataw

w

SVM RVM Prot FLD

Four linear classifiers trained on subject data
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Model validation/testing

• Cross-validation:  Subject responses [% 
correct, reaction time, confidence] are 
explained 

- very well by SVM 
- moderately well by RVM / FLD
- not so well by Prot

• Curse of dimensionality strongly limits this 
result.  A more direct test: Synthesize 
optimally discriminable faces...
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ε=−21 ε=−14 ε=−7 ε=0 ε=7 ε=14 ε=21

SVM

RVM

Prot

FLD

Add classifierSubtract classifier

[Wichmann, Graf, Simoncelli, Bülthoff, Schölkopf, NIPS*04] 
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50

100

%
C
or
re
ct

Amount of classifier image added/subtracted
(arbitrary units)

1.0 2.0 4.0 8.00.50.25

SVM
RVM
Proto
FLD

[Wichmann, Graf, Simoncelli, Bülthoff, Schölkopf, NIPS*04] 
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Independent Poisson responses  
[e.g., Seung & Sompolinsky, 1993]
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though their performance is similar, the decoders differ internally in 
their pooling weights (Supplementary Fig. 3).

Discriminating orientations
We modeled estimation from a population of neurons by using the 
peak of the log-likelihood function to extract a single stimulus esti-
mate. We then studied orientation discrimination, which depends on 
the shape of the log-likelihood function. To discriminate two orienta-
tions given a population response, the decoder has to compare the 
likelihoods associated with the alternatives; for example, by comput-
ing the logarithm of the ratio of the likelihoods. This log-likelihood 
ratio is a linear decision function defined by its discrimination weight 
vector w and discrimination offset b 

log ( , ) log ( )
( )

log ( ) log ( )

[ (

LR L
L

L L

Wi

1 2
1
2

1 2

1)) ( )] [ ( ) ( )]

( , ) ( , )

W r B B

w r b

i i
i

N

i i
i

N

2 1 2
1

1 2 1 2
1

The parameters of the log-likelihood ratio (Eq. (2)) are the differ-
ences between the parameters of the log-likelihood representation 
(Eq. (1)) evaluated at the two orientations 1 and 2. The sign of 
the log-likelihood ratio indicates which of 1 or 2 is more likely 
to have elicited the observed population response. We quantified 
discrimination performance with a population neurometric func-
tion that measures the discrimination accuracy as a function of 
the angular difference  between the two orientations. Each point 
of the neurometric function gives the discrimination accuracy 
between  and  + , averaged across all 72 values of . In the 
population neurometric function of the ELD, the discrimination 
accuracy increased monotonically with  (Fig. 4a), as is typical of 
a psychometric function that represents behavioral performance in 
a discrimination task. The PID and CB-ELD yielded less accurate 
discrimination than the ELD, just as they were less accurate for ori-
entation estimation (Fig. 4a). The same was true for the other four 
sets of V1 population responses (Fig. 4b). These results general-
ized across neuronal population subsamples of different sizes from 
our five data sets (Supplementary Fig. 4). In summary, orientation 
discrimination is more accurate when the empirical structure of the 
neuronal response distributions is taken into account, especially 
when including interneuronal correlations.

(2)(2)

The function of both the PID and ELD derives from how they lin-
early pool sensory responses to approximate the log-likelihood func-
tion. To understand how these decoders assign weights to neurons 
with different response characteristics, we examined the weighting 
profile of each decoder in a series of discrimination tasks covering a 
range of values of . We averaged the discrimination weights (w in 
Eq. (2)) across neurons with respect to the discrimination boundary,  
which we varied in steps of 5 degrees around the clock to sample  
all possible discriminations. For coarse discriminations (  =  
90 degrees), the most positive and negative average weights matched 
the target orientations (Fig. 5a–c). Thus, when discriminating 
between very different orientations, neurons whose preferred orienta-
tions are aligned with the discriminanda are most strongly recruited; 
discrimination is facilitated because the responses of these neurons 
differ strongly. However, for fine discriminations (  = 5 degrees), 
this mechanism is ineffective because neurons tuned for one of the 
discriminated orientations respond almost as well to the other. To 
overcome this, the decoders emphasize neurons with preferred orien-
tations further apart from the discriminanda (Fig. 5a–c), effectively 
assigning the highest weights to neurons for which the stimuli are 
located at the flanks, rather than the peaks, of the tuning curve (also 
illustrated in Supplementary Fig. 5). Thus, when decoding sensory 
responses according to a linear representation of the log-likelihood 
function, the neuronal pooling mechanisms change automatically 
and adaptively with the perceptual task. The importance of off- 
optimal neurons in fine discriminations is an automatic consequence of  
likelihood-based decision-making and does not require ad hoc com-
putations to create a particular decision rule.

The average discrimination weights empirically derived from 
the data (ELD and CB-ELD) were qualitatively similar to weights 
based on parametric assumptions on the neuronal response distri-
butions (PID). However, the superiority of the ELD over the PID 
in orientation discrimination tasks (Fig. 4a,b) must be a conse-
quence of the different discrimination weights the two decoders 
assign to individual neurons (as reflected in Supplementary Fig. 3 
by the differences between their pooling weights W from which 
the discrimination weights w are derived). The ELD made adjust-
ments to the PID weights and we suppose that the difference in their 
 discrimination weights varies from neuron to neuron in a way that 
may be obscured when considering only the average across neurons 
(as in Fig. 5a–c).

To study the differences in neuronal pooling mechanisms for ori-
entation discrimination on the level of single neurons, we asked how 
the discrimination weights (w in Eq. (2)) depended on the respon-
siveness of individual neurons. For fine discriminations, the weights 
associated with the ELD, CB-ELD and PID were largely independent 

Figure 4 Orientation discrimination accuracy 
for the ELD, the CB-ELD and the PID. (a) The 
population neurometric functions represent the 
discrimination accuracy (mean  s.e.m. across 
orientations) as function of the orientation 
difference. The interpolations were done 
using a cumulative Weibull distribution fitted 
using maximum likelihood. To avoid showing 
a neurometric function that mainly covers the 
asymptotic regime (accuracies close to 1), we 
averaged the discrimination accuracies across 
random subsets of 20 neurons from data set 3. 
The orientation discrimination threshold yielding an accuracy of 0.75 (mean  s.e.m. estimated by bootstrap) was 2.58  0.16, 3.70  0.17 and 5.99   
0.20 degrees for the ELD, CB-ELD and PID, respectively. (b) We evaluated the discrimination accuracy across data sets by comparing their orientation 
discrimination thresholds (mean  s.e.m. estimated by bootstrap) computed using entire populations.
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• Is the coin fair? Compared to what?

• Point hypotheses: 

Bayesian Model Comparison

M1 : p = p1 = 0.5 M2 : p = p2 = 0.6

p(M1 |D) =
p(D | M1)P(M1)

p(D)
=
p(D | M1)P( p1)

p(D)

Assuming equal priors over models the Bayes factor is 

p(M1 |D)
p(M2 |D)

=
p(D | M1)P(M1)
p(D | M2 )P(M2 )

=
p(D | M1)P( p1)
p(D | M2 )P( p2 )
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• Is the coin fair? Compared to what?

• Alternative hypothesis: 

Bayesian Model Comparison

M1 : p = p1 = 0.5 M2 : p ≠ 0.5

p(M2 |D) =
p(D | M2 )p(M2 )

p(D)

= p( pcoin |D)p( pcoin )dpcoin0

1

∫

=
p(D | M2 , pcoin )p( pcoin )dpcoin0

1

∫ P(M2 )

p(D)

Compute Bayes factor as before. 
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Continuous/Gaussian: 
Localization

I find that          . Is that convincing? Is the 
apparent bias real?

x ≠ 0

70

Continuous/Gaussian: 
Localization

Take N independent samples from the 
distribution, these act like draws from N 
independent, identically distributed (IID) RVs: 

X1,X2 ,!XN
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Continuous/Gaussian: 
Localization

The N independent samples are

ML estimates are

x1,x2 ,!xN

µ̂ =
xi

i=1

N

∑
N

σ̂ 2 =
xi − x( )2

i=1

N

∑
N −1

72



Continuous/Gaussian: 
Localization

MAP estimates of the mean are based on the 
posterior, a product of Gaussians (assuming a 
Gaussian) prior. Thus there is shrinkage toward 
the prior.
Model comparison for hypotheses about the 
mean (variance assumed known) are similar to 
the binomial example.
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The Gaussian

• parameterized by mean and stdev (position / width)
• joint density of two indep Gaussian RVs is circular!   [easy]
• product of two Gaussian dists is Gaussian!   [easy] 

• conditionals of a Gaussian are Gaussian!   [easy]

• sum of Gaussian RVs is Gaussian!     [moderate]

• all marginals of a Gaussian are Gaussian!    [moderate]

• central limit theorem: sum of many RVs is Gaussian!   [hard]

• most random (max entropy) density with this variance! [moderate]
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Completing the square shows that this 
posterior is also Gaussian, with

(average, weighted by inverse variances!)

∝

Product of Gaussian distributions is Gaussian
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Completing the square shows that this 
posterior is also Gaussian, with

(average, weighted by inverse variances!)

p(x|y) / p(y|x)p(x)
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Product of Gaussian distributions is Gaussian
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The Gaussian

• parameterized by mean and stdev (position / width)
• joint density of two indep Gaussian RVs is circular!   [easy]
• product of two Gaussian dists is Gaussian!   [easy] 

• conditionals of a Gaussian are Gaussian!   [easy]

• sum of Gaussian RVs is Gaussian!     [moderate]

• all marginals of a Gaussian are Gaussian!    [moderate]

• central limit theorem: sum of many RVs is Gaussian!   [hard]

• most random (max entropy) density with this variance! [moderate]
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mean:  [0.2, 0.8]
cov:  [1.0 -0.3;

 -0.3  0.4]

Multi-D Gaussian densities
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~x ⇠ N(~µ,C), let P = C

�1

Gaussian, with:

Conditional:

p(x1|x2 = a) / e

� 1
2 [P11(x1�µ1)

2+2P12(x1�µ1)(a�µ2)+...]

= e

� 1
2 [P11x

2
1+2(P12(a�µ2)�P11µ1)x1+...]

= e

� 1
2

⇣
x1�µ1+

P12
P11

(a�µ2)
⌘
P11

⇣
x1�µ1+

P12
P11

(a�µ2)
⌘
+...

Marginal:

Gaussian, with:

p(x1) =

Z
p(~x) dx2

(the “precision” matrix)

[on board]

79

û

z = û

T
~x

µ
z

= ûT ~µ
x

�2
z

= ûTC
x

û

z

p(z)

Generalized marginals of a Gaussian

x1

x2

w

is Gaussian, with:
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Bivariate statistics

• Covariance of X and Y: 

• Correlation of X and Y: 
 
 

• Unbiased estimators from samples:

Cov(X ,Y ) = E X − µX( ) Y − µY( )( )
ρXY =

Cov(X ,Y )
σ Xσ Y

rxy =
xi − x( ) yi − y( )

i=1

N

∑
N −1( )sxsy

=
xi − x( ) yi − y( )

i=1

N

∑

xi − x( )2
i=1

N

∑ yi − y( )2
i=1

N

∑

sxy =
xi − x( ) yi − y( )

i=1

N

∑
N −1( )
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Correlation: summary of data cloud shape

+
+ -
-
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Correlation captures dependency, 
but not “shape”
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Correlation and regression 

TLS (largest 
eigenvector)

Least-squares 
regression

“Regression 
to the mean”
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−5 0 5
−5

0

5
corr=−0.80

−5 0 5
−5

0

5
corr=−0.40

−5 0 5
−5

0

5
corr=0.00

−5 0 5
−5

0

5
corr=0.40

−5 0 5
−5

0

5
corr=0.80

Correlation and regression 
85

Variance	partitioning	and	model	assessment

SStotal = yi − y( )2
i=1

N

∑ = SSexplained + SSresidual

SSexplained = ŷi − y( )2
i=1

N

∑

SSresidual = ŷi − yi( )2

i=1

N

∑

Coeff. of determination r 2 =
SSexplained

SStotal

86

Correlation between variables does  
not uniquely indicate their relationship
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https://www.autodeskresearch.com/publications/samestats

More extreme  
examples !
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An Aside on Statistical Independence
Saying that voxel weights are independent means:
⇒  The weight of one component tells you nothing about the weight of another

Statistical independence a stronger assumption uncorrelatedness

⇒ All independent variables are uncorrelated
⇒ Not all uncorrelated variables are independent:

p(w1, w2) = p(w1)p(w2)

r = 

Independence implies uncorrelated, 
   but uncorrelated doesn’t imply independent! 
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Null Hypothesis: 
Distribution of 
normalized  
dot product of 
pairs of  
Gaussian vectors 
in N dimensions:

N=3

N=8

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

1.2

−1 −0.5 0 0.5 1
0

0.5

1

1.5

N=4

N=16

−1 −0.5 0 0.5 1
0

0.02

0.04

0.06

0.08

−1 −0.5 0 0.5 1
0

0.01

0.02

0.03

0.04

0.05

−1 −0.5 0 0.5 1
0

0.005

0.01

0.015

0.02

0.025

N=32

N=64

Lack of 
correlation is 
favored in N>3 
dimensions

(1� d2)
N�3

2

90



sin(theta)^(N-2)
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0
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1Distribution of 
angles of pairs of 
Gaussian vectors

2D

3D

4D

6D

10D

18D
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Worldwide	non-commercial	space	launches
	correlates	with	

Sociology	doctorates	awarded	(US)

Sociology	doctorates	awarded	(US) Worldwide	non-commercial	space	launches

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

500	Degrees	awarded

550	Degrees	awarded

600	Degrees	awarded

650	Degrees	awarded

700	Degrees	awarded

40	Launches

50	Launches

30	Launches

60	Launches

tylervigen.com
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Letters	in	Winning	Word	of	Scripps	National	Spelling	Bee
	correlates	with	

Number	of	people	killed	by	venomous	spiders

Number	of	people	killed	by	venomous	spidersSpelling	Bee	winning	word

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

0	deaths

5	deaths

10	deaths

15	deaths

5	letters

10	letters

15	letters

tylervigen.com

B
e
d
s
h
e
e
t	ta

n
g
lin

g
sC

h
e
e
s
e
	c
o
n
s
u
m
e
d

Per	capita	cheese	consumption
	correlates	with	

Number	of	people	who	died	by	becoming	tangled	in	their	bedsheets

Bedsheet	tanglings Cheese	consumed

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

200	deaths

400	deaths

600	deaths

800	deaths

28.5lbs

30lbs

31.5lbs

33lbs

tylervigen.com

Nevertheless, 
one can find 
correlation if 
one looks for it!

http://www.tylervigen.com/spurious-correlations
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Correlation does not imply causation
• Beware selection bias 
• Correlation does not provide a direction for causality.  

For that, you need additional (temporal) information. 
• More generally, correlations are often a result of  

hidden (unmeasured, uncontrolled) variables…

Example: conditional independence: 
    p(A,B | H) = p(A | H) p(B | H)

A B

H

[on board: In Gaussian case, connections are explicit in the Precision Matrix]

+ +
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Another example: Simpson’s paradox

+ -

A B

H

+
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Milton Friedman’s Thermostat
O = outside temperature (assumed cold) 
I = inside temperature (ideally, constant)  
E = energy used for heating 

Statistical observations: 
• O and I uncorrelated 
• I and E uncorrelated 
• O and E anti-correlated

Some nonsensical conclusions: 
• O and E have no effect on I, so shut off heater to save money! 
• I is irrelevant, and can be ignored.  Increases in E cause decreases in O.

-
O

I

E
++

-
O

I

E

True interactions:

Statistical  interactions, P=C-1:

Statistical summary cannot replace scientific reasoning/experiments!
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Summary: Correlation misinterpretations

• Correlation does not imply data lie on a line 
(subspace), with noise perturbations

• Correlation => dependency, but lack of correlation 
does not imply independence

• Correlation does not imply causation (temporally, or 
by direct influence/connection)

• Correlation is a descriptive statistic, and cannot 
replace the need for scientific reasoning/experiment!
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• Optimization failures (e.g., local minima)  
[convex relaxation, test with simulations]

• Overfitting (too many params, not enough data) 
[use cross-validation to select complexity, or to 
control regularization]

• Experimental variability (due to finite/noisy 
measurements) [use math/distributional 
assumptions, or simulations, or bootstrapping]

• Model failures

Taxonomy of model-fitting errors
97

statAnMod - 9/12/07 - E.P. Simoncelli

Optimization...

Smooth (C2)

Convex

Quadratic

Closed-form,
and unique

Iterative descent,
(possible local 

minima)

Iterative descent, 
unique

Heuristics, 
exhaustive search, 
(pain & suffering)

98
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Cross-validation

(1) Randomly partition data into 
a “training” set, and a “test” set.    
(2) Fit model to training set.  
Measure error on test set. 
(3) Repeat (many times) 

(4) Choose model that 
minimizes the cross-validated 
(test) error

A resampling method for constraining a model.  Widely used to 
identify/avoid over-fitting.

0 5 10 15 20
10−2

100

102

104

106

polynomial degree

M
SE

 

 
fit error
x−val error
true degree
true error

train error
test error

Using cross-validation to select the 
degree of a polynomial model:

100

argmin
~�

||~y �X~�||2

argmin
~�

||~y �X~�||2 + �||~�||2

Ridge regression  
(a.k.a. Tikhonov regularization)

Equivalent formulation: MAP estimate, 
assuming Gaussian likelihood & prior!

Ordinary least squares regression:

“Regularized” least squares regression:

Choose lambda by cross-validation:
0 0.2 0.4 0.6 0.8 1

−2

−1

0

1

2

3

4

5

 

 
data
LS reg
Ridge reg

7th-order polynomial regression:

�̂ridge = (XTX + �I)�1XT~y
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Mean squared error for our last example:

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

λ

Linear MSE
Ridge MSE
Ridge Bias^2
Ridge Var

Ridge regression in R: see the function lm.ridge in the package
MASS, or the glmnet function and package

10

0 5 10 15 20 25

1.
50
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55

1.
60

1.
65

1.
70

1.
75

1.
80

Amount of shrinkage

Pr
ed

ic
tio

n 
er

ro
r

Low High

Linear regression
Ridge regression

Linear regression:
Squared bias ⇡ 0.006

Variance ⇡ 0.627

Pred. error ⇡ 1 + 0.006 + 0.627

Pred. error ⇡ 1.633

Ridge regression, at its best:
Squared bias ⇡ 0.077

Variance ⇡ 0.403

Pred. error ⇡ 1 + 0.077 + 0.403

Pred. error ⇡ 1.48

4

from http://www.stat.cmu.edu/~ryantibs/datamining/
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argmin
~�

||~y �X~�||2 + �
X

k

|�k|

L1 regularization  
(a.k.a. least absolute shrinkage and selection operator - LASSO)

L1 norm (still convex)
Next time: the lasso

The lasso combines some of the shrinking advantages of ridge with
variable selection

(From ESL page 71)

21

Using an absolute error regularization term promotes 
binary selection of regressors:

From Hastie, Tibshirani, Wainwright 2015

103

Solving for LASSO in 1D: soft-thresholding

argmin
�

||~y � ~x�||2 + �|�|

assume ||~x||2 = 1

[solution on board]

~y

T
~x

�
�/2

�/2

�̂OLS

�̂LASSO

�̂ridge
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Next time: the lasso

The lasso combines some of the shrinking advantages of ridge with
variable selection

(From ESL page 71)

21

“relaxed LASSO”

Bias reduction using the “relaxed LASSO”: 
Re-solve for non-zero coefficients after 
eliminating unused regressors

LASSO

105



LASSO vs. Ridge regression

THE LASSO ESTIMATOR 11
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k�̂k1/k�̃k1 k�̂k2/k�̃k2

Figure 2.1 Left: Coe�cient path for the lasso, plotted versus the ¸

1

norm of the
coe�cient vector, relative to the norm of the unrestricted least-squares estimate —̃.
Right: Same for ridge regression, plotted against the relative ¸

2

norm.

β
^

β
^2

. .β

1

β 2

β
1

β

Figure 2.2 Estimation picture for the lasso (left) and ridge regression (right). The
solid blue areas are the constraint regions |—

1

|+|—
2

| Æ t and —

2

1

+—

2

2

Æ t

2, respectively,
while the red ellipses are the contours of the residual-sum-of-squares function. The
point ‚

— depicts the usual (unconstrained) least-squares estimate.

10 THE LASSO FOR LINEAR MODELS

algorithms for finding its solutions. More details are given in Exercises (2.3)
and (2.4).

As an example of the lasso, let us consider the data given in Table 2.1, taken
from Thomas (1990). The outcome is the total overall reported crime rate per

Table 2.1 Crime data: Crime rate and five predictors, for N = 50 U.S. cities.

city funding hs not-hs college college4 crime rate

1 40 74 11 31 20 478
2 32 72 11 43 18 494
3 57 70 18 16 16 643
4 31 71 11 25 19 341
5 67 72 9 29 24 773
...

...
...

...
...

50 66 67 26 18 16 940

one million residents in 50 U.S cities. There are five predictors: annual police
funding in dollars per resident, percent of people 25 years and older with four
years of high school, percent of 16- to 19-year olds not in high school and not
high school graduates, percent of 18- to 24-year olds in college, and percent
of people 25 years and older with at least four years of college. This small
example is for illustration only, but helps to demonstrate the nature of the
lasso solutions. Typically the lasso is most useful for much larger problems,
including “wide” data for which p ∫ N .

The left panel of Figure 2.1 shows the result of applying the lasso with
the bound t varying from zero on the left, all the way to a large value on
the right, where it has no e�ect. The horizontal axis has been scaled so that
the maximal bound, corresponding to the least-squares estimates —̃, is one.
We see that for much of the range of the bound, many of the estimates are
exactly zero and hence the corresponding predictor(s) would be excluded from
the model. Why does the lasso have this model selection property? It is due
to the geometry that underlies the ¸

1

constraint Î—Î
1

Æ t. To understand this
better, the right panel shows the estimates from ridge regression, a technique
that predates the lasso. It solves a criterion very similar to (2.3):

minimize
—0,—

Y
]

[
1

2N

Nÿ

i=1

(yi ≠ —
0

≠
pÿ

j=1

xij—j)2

Z
^

\

subject to
pÿ

j=1

—2

j Æ t2.

(2.7)

The ridge profiles in the right panel have roughly the same shape as the lasso
profiles, but are not equal to zero except at the left end. Figure 2.2 contrasts
the two constraints used in the lasso and ridge regression. The residual sum

[From Hastie, Tibshirani, Wainwright 2015] �
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• K-Means (Lloyd, 1957)

Clustering

• “Soft-assignment” version of K-means 
    (a form of Expectation-Maximization - EM)

• In general, alternate between: 
1) Estimating cluster assignments 
2) Estimating cluster parameters 

• Coordinate descent: converges to (possibly local) minimum 

• Need to choose K (number of clusters)
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• Estimating cluster assignments: given class centers, 
assign each point to closest one.Voronoi tessellation

Given cluster centers, we identify
each point to its nearest center.
This defines a Voronoi tessellation
of Rp
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Given c1, . . . cK 2 Rp, we define the Voronoi sets

Vk = {x 2 Rp : kx� ckk22  kx� cjk22, j = 1, . . .K}, k = 1, . . .K

These are convex polyhedra (we’ll see them again when we study
classification)

12

• Estimating cluster parameters: given assignments, re-
estimate the centroid of each cluster.

K-Means

Soap bubbles:
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K-means example

Here Xi 2 R2, n = 300, and K = 3
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[from R. Tibshirani, 2013]
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K-means example, multiple runs

Here Xi 2 R2, n = 250, and K = 4, the points are not as
well-separated
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These are results of result of running the K-means algorithm with
di↵erent initial centers (chosen randomly over the range of the
Xi’s). We choose the second collection of centers because it yields
the smallest within-cluster variation

14

Warning: Initialization matters… 

Three solutions obtained with different random starting points:

[from R. Tibshirani, 2013]
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K -means Limitations Illustrated

Non-convex/non-round-shaped clusters: Standard K -means fails!

Clusters with different densities

Picture courtesy: Christof Monz (Queen Mary, Univ. of London)

(CS5350/6350) Data Clustering October 4, 2011 21 / 24

K-means failures
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ML for discrete mixture of Gaussians

= assignment probability

= mean/covariance of class n

Intuition: alternate between maximizing these two sets of variables 
(“coordinate descent”)
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[wikipedia]
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Standard solution:
1. Threshold to find segments containing  spikes
2. Reduce dimensionality of segments using PCA
3. Identify spikes using clustering (e.g., K-means)

Note: Fails for overlapping spikes!

Application to neural “spike  sorting”
114



A

synchronous spiking superposition for various time shifts
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Failures of clustering for near-synchronous spikes

[Pillow et. al. 2013]
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Figure 4: Visualization of spike sorting results for simulated data [9] (top row) using
waveforms in Fig. 3(a), and tetrode data [13, 3] (bottom and middle rows). (a,c,e):
Spike identification arising from standard clustering (Section 1.1). Each marker represents
the projection of a voltage segment onto the leading 2 principal components. Points,
circles, and crosses represent hits, missed spikes, and false positives, respectively, with
color indicating cell identity. Gray points (bottom two rows) correspond to segments of
real data for which no ground truth is available. (b,d,f): Spike identification arising
from our method, represented in the same space as (a,c,e). Insets show example voltage
segments containing overlapping spikes (corresponding to numbered points in (a,c)) in
the time domain. Colored vertical lines in the insets represent the occurrence times of
ground truth spikes (top row) and spikes estimated by our method (bottom row).
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Simulated data  [Quiroga et. al. 2004]

PC 1 PC 1

clustering (K-means) CBP

[Ekanadham et al, 2014]
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