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Probability & Statistics:
Intro, summary statistics, probability

Stesistics it the science of learning [rom expericnoe, especidly ex
perience that arrives a littla bit at a time. 'LU1e earliest information
i statistics, originating in about 1650. This century has
seen statistical technicues beeome the vtic methoda of choice
i Dumedical scienee, psychulogy, exlu L0, econnmics, communi-
cations theary, sociology, genetic studies. epidemiclogy, wnd other
areas. Recently, traditional sciences like geology. physics. and os-
tronomy have begun to make increasing use of statistical methods
as Lhey (veus on areas that demand informational efficiency, such as
the study of rare and exotic particles or extremely distaonn padaxies.

Mast pecple are not natural-born szatisticinns. Left <o cur cwn
devices we are not very geod at picking out patterns from o sea
of noisy data. To put il anothier way, we are 2! too gond at pick-
ing cu: non-existent putterns that huppen Lo suil one purposes.
Statistical theory attacks the problem from both ends, It provides
optimal methods for finding & real signal in & noisy baclground,
and alée provides strict checks against the overinterpretetion of
random patterns.

SClenoe was

- Efron & Tibshirani, Introduction to the Bootstrap, 1998




Some history...

e 1600’s: Early notions of data summary/averaging
® 1700’s: Bayesian prob/statistics (Bayes, Laplace)
e 1920’s: Frequentist statistics for science (e.g., Fisher)

® 1940’s: Statistical signal analysis and communication,
estimation/decision theory (e.g., Shannon, Wiener, etc)

e 1950’s: Return of Bayesian statistics (e.g., Jeffreys,
Wald, Savage, Jaynes...)

® 1970’s: Computation, optimization, simulation (e.g,.
Tukey)

e 1990’s: Machine learning (large-scale computing +
statistical inference + lots of data)

® Since 1950’s! : statistical neural/cognitive models

Scientific process

Observe / measure data

Summarize/fit model(s),
compare with predictions

Generate predictions,
design experiment

Create/modify
hypothesis/model




Descriptive statistics: Central tendency

Descriptive statistics: Central tendency

® We often summarize data with the average. Why?

® Average minimizes the squared error (as in regression!):
N

N
o .1 2 1
wu(Z) = arg min N Z(mn - c) =~ ; T,

n=1

1 N 1/ p
® Generalize: minimize L, norm: arg mgn {N Z |z — |’ }
— minimize L; norm: median, m(Z) n=t
— minimize Lonorm: mode
— minimize L norm: midpoint of range
® [ssues: outliers, asymmetry, bimodality

® How do we choose?




Descriptive statistics: Dispersion

Descriptive statistics: Dispersion

® Sample standard deviation

e Quantiles




Descriptive statistics: Dispersion

k_l_
A

Summary statistics (eg: sample mean/var) can be
interpreted as estimates of model parameters

To formalize this, we need tools from probability...

_, Drobability

—_ 1
data histogram distribution

{x,} {cw Iy} px)
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probabilistic
model

Measurement

data

(%} Pe(X)

Inference
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Probabilistic Middleville

In Middleville, every family has two children, brought by
the stork.

The stork delivers boys and girls randomly, with family )
robability {BB,BG.GB,GG}={0.2.0.3.0.2,0.3}1c mode
p y prob&%}s“"

You pick a family at random and discover that one
of the children is a girl. data

What are the chances that the other child is a girl?
inference
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Statistical Middleville

In Middleville, every family has two children, brought by
the stork.

omly, with family
B.,BG,GB,GG}={0.20. ;
In a survey of 100 of the Middleville families, 32 have two
girls, 23 have two boys, and the remainder one of each.

The stork delive

You pick a family at random and discover that one
of the children is a girl. data

What are the chances that the other child is a girl?
inference
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Probability basics (outline)

e distributions: discrete and continuous
e cxpected value, moments

e cumulative distributions. Quantiles, Q-Q plots,
drawing samples.

e transformations: affine, monotonic nonlinear

14



Probability: Definitions/nor ##asesss

let X, Y, Z be random variables

they can take on values (like ‘heads’ or ‘tails’; or integers 1-6; or
real-valued numbers)

let x, y, z stand generically for values they can take,
and denote events such as X = x

write the probability that X takes on value x as
P(X =x), or Px(x), or sometimes just P(x)

P(x) is a function over values x, which we call the probability
“distribution” function (pdf) (for continuous variables, “density”)
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P(x)

Probability distributions

Discrete random variable Continuous random variable
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Example distributions

a not-quite-fair coin roll of a fair die

sum of two rolled fair dice

0 1

clicks of a Geiger counter,

in a fixed time interval .. and, time between clicks

horizontal velocity of gas
molecules exiting a fan
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Expected value - discrete
E(X)= ixt.p(xl.) [the mean, p]

More generally:  E(f(X))= if(xi)p(xt.)
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B(z) = / 2 p(a) da
B = [ pla) ds

E (- w?) = [(o =P p(o) do

B(f(x) = / f(@) ple) de

[“second moment”, m2]

Note: this is an inner product, and thus linear:

Expected value - continuous

[variance, 0]

/x2 p(z) do — p? lequal to m> minus u*]

[“expected value of /]

E(af(z) +bg(x)) = aE (f(z)) + bE (g(x))

[meana /J‘]
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Cumulatives
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Drawing samples - discrete
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Multi-variate probability

* joint distributions

* marginals (integrating)

* conditionals (slicing)

* Bayes’ rule (inverse probability)

* statistical independence (separability)

¢ linear transformations

[on board]
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Joint and conditional probability - discrete

A 1z B 5
& Z2e 2o [lasa3esies(les
* LN S
MR R A A A R
4 2a [3a 204§¢029¢Zo.o
L LEEXIRYY
i | ¥ | vl | v
Y vy el vl vl vl
g v v fvvfvefvelive
v v [vv|ve
IR R EXS R KXY KXY
4 2o 3o 200?00?003"0
. LI XN IR
UIRE IR KX KX KX KX

23

Joint and conditional probability - discrete
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Joint distribution (continuous)

p(z,9)

Marginal distribution 26

p(x,y)

p(.r) = /P(x,y)dy §0.0.15

0.005|

%O 100 150




Conditional probability

A&B

Neither A nor B

p(A| B) = probability of 4 given that B is asserted to be true =

P(A&B)
p(B)
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100

Conditional distribution

p(z,y) p(z|y = 68)

0.0:

0.025]

0.02

0.015]

0.01

0.005

%0 100
90 100 110 120 x
X

150

28



Conditional distribution

100
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plely = 68) = pl, y = 68) / [ty =680

p(z,y = 68)/p(y = 68)
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More generally: \ \‘
p(x‘y) = p(.’B, y)/p(y) slice joint distribution normalize (by marginal)
30
Bayes’ Rule
A&B

p(A| B) = probability of 4 given that B is asserted to be true = %
P
(A& B)= p(B)p(4|B)

=p(A)p(B|4)

11 )= PBLADP(A)
= pa )= 2=




LII. An Effay towards folving a Problem in
the Doétrine of Chances. By the late Rev.
Mr. Bayes, F. R.S. communicated by Mr.
Price, in a Letter to John Canton, 4. M.
F.R.S.

Dear Sir,

Read Dec. 23, ) Now fend you an effay which I have

1763 found among the papers of our de-
ceafed friend Mr. Bayes, and which, in my opinion,
has great merit, and well deferves to be preferved.

p(zly) = p(ylz) p(x)/p(y)

(a direct consequence of the definition of conditional probability)
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Conditional vs. marginal
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In general, the marginals for different Y values differ.

When are they they same? In particular, when are all
conditionals equal to the marginal?
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Statistical independence

Random variables X and Y are statistically
independent if (and only if): >

p(x,y)=p@®)p(y) Vx,y

80 90 100 110 120
X

[note: for discrete distributions, this is an outer product!]

Independence implies that a// conditionals are equal to the
corresponding marginal:

p(x|y)=p(x,»)/ p(y)=p(x) Vx,y
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Sums of RVs

Let Z=X+ Y. Since expectation is linear:

E(X+Y)=E(X)+E(Y)
In addition, if X and Y are independent, then
E(XY)=E(X)E(Y)
2
o, =E(((X+Y)—(,ux+/,ty)) )=0'f(+0'§
and p,(z) isaconvolution of p (x) and p,(y)

[on board]
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Mean and variance

* Mean and variance summarize the centroid/width
* Translation and rescaling of random variables
* Mean/variance of weighted sum of random variables
* The sample average
e ... converges to true mean (except for bizarre distributions)
. . 2
o ... with variance /N

e ... most common common choice for an estimate ...
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Central limit for a uniform distribution...

(ur +us)/V2

10k samples, uniform density (sigma=1)
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Central limit for a binary distribution...

one coin

avg of 16 coins

avg of 4 coins

avg of 256 coins
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