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- Efron & Tibshirani, Introduction to the Bootstrap, 1998
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Some history…
• 1600’s: Early notions of data summary/averaging

• 1700’s: Bayesian prob/statistics (Bayes, Laplace)

• 1920’s: Frequentist statistics for science (e.g., Fisher)

• 1940’s: Statistical signal analysis and communication, 
estimation/decision theory (e.g., Shannon, Wiener, etc)

• 1950’s: Return of Bayesian statistics (e.g., Jeffreys, 
Wald, Savage, Jaynes…)

• 1970’s: Computation, optimization, simulation (e.g,. 
Tukey)

• 1990’s: Machine learning (large-scale computing + 
statistical inference + lots of data)

• Since 1950’s! : statistical neural/cognitive models
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Scientific process

Summarize/fit model(s),
compare with predictions

Create/modify
hypothesis/model

Generate predictions,
design experiment

Observe / measure data
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Descriptive statistics: Central tendency
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Descriptive statistics: Central tendency
• We often summarize data with the average.  Why?

• Average minimizes the squared error (as in regression!):

• Generalize: minimize Lp norm: 

– minimize L1 norm: median,

– minimize L0 norm: mode

– minimize      norm: midpoint of range

• Issues: outliers, asymmetry, bimodality

• How do we choose?
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Descriptive statistics: Dispersion
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Descriptive statistics: Dispersion

• Sample standard deviation  

 

• Mean absolute deviation (MAD) about the median  

• Quantiles
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Descriptive statistics: Dispersion

Summary statistics (eg: sample mean/var) can be 
interpreted as estimates of model parameters
To formalize this, we need tools from probability…
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data

{xn}

histogram

{ck, hk}

probability 
distribution

p(x)
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data

{ ⃗x n}

probabilistic 
model

pθ( ⃗x )

Measurement

Inference
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You pick a family at random and discover that one 
of the children is a girl. 

Probabilistic Middleville

The stork delivers boys and girls randomly, with family 
probability {BB,BG,GB,GG}={0.2,0.3,0.2,0.3} 

probabilistic model

In Middleville, every family has two children, brought by 
the stork. 

What are the chances that the other child is a girl? 

data

inference
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Statistical Middleville
In Middleville, every family has two children, brought by 
the stork. 

In a survey of 100 of the Middleville families, 32 have two 
girls, 23 have two boys, and the remainder one of each.

data

inference

The stork delivers boys and girls randomly, with family 
probability {BB,BG,GB,GG}={0.2,0.3,0.2,0.3} 

You pick a family at random and discover that one 
of the children is a girl. 

What are the chances that the other child is a girl? 
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Probability basics (outline)

• distributions: discrete and continuous

• expected value,  moments

• cumulative distributions. Quantiles, Q-Q plots, 
drawing samples.  

• transformations: affine, monotonic nonlinear
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Probability: Definitions/notation
let X, Y, Z be random variables 

they can take on values (like ‘heads’ or ‘tails’; or integers 1-6; or 
real-valued numbers) 

let x, y, z stand generically for values they can take, 
and denote events such as X = x 

write the probability that X takes on value x as 
P(X = x),  or PX(x),  or sometimes just P(x) 

P(x) is a function over values x, which we call the probability 
“distribution”  function (pdf) (for continuous variables, “density”)

Useful to have this  notation up on 
slid, while introducing concepts on 
board
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Probability distributions
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Expected value - discrete
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Expected value - continuous
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Note: this is an inner product, and thus linear:

[equal to m2 minus     ]μ2

E (af(x) + bg(x)) = aE (f(x)) + bE (g(x))

[“expected value of f ”]
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Cumulatives
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Drawing samples - discrete
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• joint distributions

• marginals (integrating)

• conditionals (slicing)

• Bayes’ rule (inverse probability)

• statistical independence (separability)

• linear transformations

Multi-variate probability

[on board]

22



Joint and conditional probability - discrete
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Joint and conditional probability - discrete

P(Ace) 
P(Heart) 
P(Ace & Heart) 
P(Ace | Heart) 
P(not Jack of Diamonds) 
P(Ace | not Jack of Diamonds)

“Independence”
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p(x, y)

Joint distribution (continuous)
25

p(x) =

Z
p(x, y)dy

p(x, y)

Marginal distribution 26



Conditional probability

A B
A & B

p(A | B) = probability of A given that B is asserted to be true = 
p(A& B)
p(B)

Neither A nor B
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p(x, y) p(x|y = 68)

Conditional distribution
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p(x|y = 68) = p(x, y = 68)

�Z
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= p(x, y = 68)
.
p(y = 68)

P
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Conditional distribution

p(x|y) = p(x, y)/p(y)

More generally:

normalize (by marginal)slice joint distribution
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Bayes’ Rule

A B
A & B

p(A& B) = p(B)p(A | B)

= p(A)p(B | A)

⇒ p(A | B) = p(B | A)p(A)
p(B)

p(A | B) = probability of A given that B is asserted to be true = 
p(A& B)
p(B)
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Bayes’ Rule

p(x|y) = p(y|x) p(x)/p(y)

(a direct consequence of the definition of conditional probability)
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P(x|Y=120)

P(x)

Conditional vs. marginal

In general, the marginals for different Y values differ. 
When are they they same?  In particular, when are all 
conditionals equal to the marginal?
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Statistical independence

Random variables X and Y are statistically 
independent if (and only if):

Independence implies that all conditionals are equal to the 
corresponding marginal: 

p(x, y) = p(x)p( y) ∀ x, y

p(x | y) = p(x, y) / p( y) = p(x) ∀ x, y

[note: for discrete distributions, this is an outer product!]
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Sums of RVs

In addition, if X and Y are independent, then

E(XY ) = E(X )E(Y )

σ Z
2 = E X +Y( )− µX + µY( )( )2( ) =σ X

2 +σ Y
2

and              is a convolution of               andpZ (z)

E(X +Y ) = E(X )+ E(Y )

Let Z = X + Y.  Since expectation is linear:

pX (x) pY ( y)

[on board]
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• Mean and variance summarize the centroid/width

• Translation and rescaling of random variables

• Mean/variance of weighted sum of random variables

• The sample average

• ... converges to true mean (except for bizarre distributions)

• ... with variance 

• ... most common common choice for an estimate  ...

Mean and variance
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Central limit for a uniform distribution...

10k samples, uniform density (sigma=1)
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Central limit for a binary distribution...
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