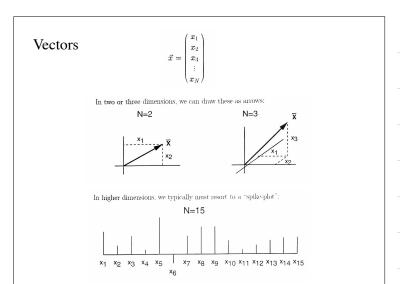
Mathematical Tools for Neural and Cognitive Science Fall semester, 2018	
Section 1: Linear Algebra	
Linear Algebra "Linear algebra has become as basic and as applicable as calculus, and fortunately it is easier" - Gilbert Strang, Linear Algebra and its Applications	



Vector operations

- scalar multiplication
- addition, vector spaces
- length, unit vectors
- inner product (a.k.a. "dot" product)
 - properties: commutative, distributive
 - geometry: cosines, orthogonality test

[on board: geometry]

Vectors as "operators"

- "averager"
- "windowed averager"
- "gaussian averager"
- "local differencer"
- "component selector"

[on board]

Inner product with a unit vector

 $(\vec{v} \cdot \hat{u}) \hat{u}$

- projection
- distance to line
- change of coordinates

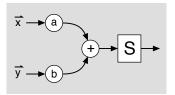
[on board: geometry]

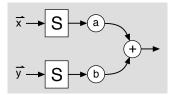
Linear System

S is a linear system if (and only if) it obeys the principle of superposition:

$$S(a\vec{x} + b\vec{y}) = aS(\vec{x}) + bS(\vec{y})$$

For any input vectors $\{\vec{x}, \vec{y}\}\$, and any scalars $\{a, b\}$, the two diagrams at the right must produce the same response:

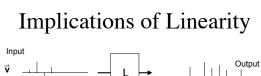


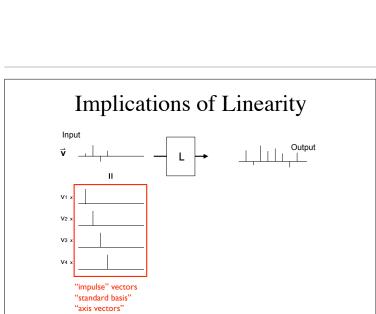


Linear Systems

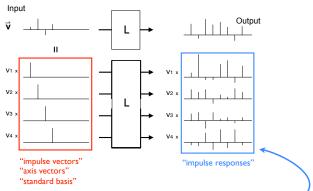
- Very well understood (150+ years of effort)
- Excellent design/characterization toolbox
- An idealization (they do not exist!)
- Useful nevertheless:
 - conceptualize fundamental issues
 - provide baseline performance
 - **-** good starting point for more complex models

1 - linAlg.key - September	5, 201





Implications of Linearity

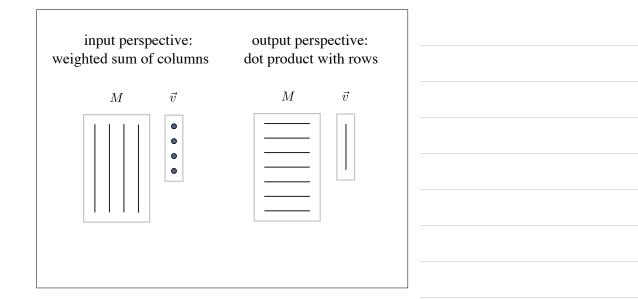


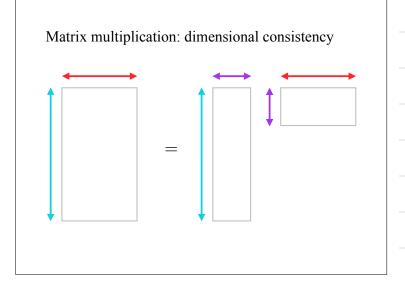
Response to *any* input can be predicted from responses to impulses This defines the operation of *matrix multiplication*

Matrix multiplication

- Two interpretations of $M\vec{v}$ (see next slide):
 - input perspective: weighted sum of columns (from diagram on previous slide)
 - output perspective: inner product with rows
- transpose A^T , symmetric matrices $(A = A^T)$
- distributive property (directly from linearity!)
- associative property cascade of two linear systems defines the product of two matrices
- generally *not* commutative $(AB \neq BA)$, but note that $(AB)^T = B^TA^T$

[details on board]





Orthogonal matrices • square shape (dimensionality-preserving) rows are orthogonal unit vectors • columns are orthogonal unit vectors • performs a rotation of the vector space (with possible axis inversion) • preserve vector lengths and angles (and thus, dot products) • inverse is transpose • arbitrary rectangular shape • arbitrary rectangular shape • a arbitrary rectangular shape • a guezze/stretch along standard axes • inverse is diagonal, with inverse of non-zero diagonal entries of original

Singular Value Decomposition (SVD)

- can express *any* matrix as $M = U S V^T$ "rotate, stretch, rotate"
 - columns of V are basis for input coordinate system
 - columns of U are basis for output coordinate system
 - S rescales axes, and determines what gets through
- interpretation as sum of "outer products"
- non-uniqueness (permutations, sign flips)
- nullspace and rangespace
- inverse and pseudo-inverse

[details on board]

