Mathematical Tools
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Fall semester, 2018

Section 3:
Linear Shift-invariant Systems

Linear shift-invariant (LSI) systems

e Linearity (previously discussed):

“linear combination in, linear combination out”

® Shift-invariance (new property):
“shifted vector in, shifted vector out”
e Note: These two properties are independent

(think of some examples that have both, one, or
neither)

LSI system

As before, express input as a sum of
“impulses”, weighted by elements of x




LSI system
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* Linearity => response to x is sum of
responses to impulses, weighted by
elements of x
« Shift-invariance => responses to
impulses are shifted copies of each other
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LSI systems are characterized by their “impulse response”
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® Sliding dot product
® Structured matrix
® Boundaries? zero-padding, reflection, circular
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Examples: impulse, delay, average, difference
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(For this class, we’ll stick to feedforward (FIR) systems)
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[figure c/o Castleman]




Discrete Sinusoids

“frequency” (cycles/vectorLength)
example : k=2

cos(wn),  w = 2mk/N . It P illls P il
L» “frequency” ’ " ” *
(FadianS/Sample) example: A =15, ¢=28n/32

More generally: fcos(wn —9) _‘: gluw LLMLL

“amplitude” 25 10 20 30

“phase” (radians)

10

11
Shifting Sinusoids
A cos(wn — ¢) = Acos(¢) cos(wn) + Asin(¢) sin(wn)
... via a well-known trigonometric identity:
cos(a — b) = cos(a) cos(b) + sin(a) sin(b)
We’ll also need conversions between polar
and rectangular coordinates:
x = Acos(¢), y= Asin(¢)
A=\a2+42, ¢=tan" (y/x)
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Shifting Sinusoids

A cos(wn — ¢) = Acos(¢) cos(wn) + Asin(¢) sin(wn)

fixed cos/sin vectors:

scale factors:

IIr, Kl il
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Asin ¢ ;

Any scaled and shifted sinusoidal vector can be written
as a weighted sum of two fixed {sin, cos} vectors!




Shifting Sinusoids

A cos(wn — ¢) = Acos(¢) cos(wn) + Asin(¢) sin(wn)

fixed cos/sin vectors:

A=16, ¢=2n1/12 1
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Any scaled and shifted sinusoidal vector can be written
as a weighted sum of two fixed {sin, cos} vectors!
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Shifting Sinusoids
A cos(wn — ¢) = Acos(¢) cos(wn) + Asin(¢) sin(wn)
fixed cos/sin vectors:
AoteemE M P sl P il
! g BiliR — il : I
o [,
o I 2 % , e e
Any scaled and shifted sinusoidal vector can be written
as a weighted sum of two fixed {sin, cos} vectors!
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LSI response to sinusoids

x(n) = cos(wn) (input)




LSI response to sinusoids

z(n) = cos(wn)

y(n) = Z T(m) COSs (UJ (7’L — m)) (convolution formula)
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LSI response to sinusoids
z(n) = cos(wn)
y(N) - Z T(m) COS (trig identity)
= COS wn -SIH UJTL
inner product of impulse response with cos/sin, respectively
A | L SRAY
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LSI response to sinusoids

z(n) = cos(wn)

COb

= CO@ O.)TL sm um




LSI response to sinusoids

x(n) = cos(wn)

y(n) = Y r(m)cos(wn —m))
= Zr(m) cos(wm) cos(wn) + Zr ) sin(wm) sin(wn)

= er(w) cos(wn) + sr(w) sin(wn)

= (A (w) cos(¢,(w))cos(wn) + (Ar(w)sin(¢,(w))pin(wn)

(rectangular -> polar coordinates)

sr(w)
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LSI response to sinusoids
x(n) = cos(wn)
y(n) = Y r(m)cos(wn —m))
= Z r(m) cos(wm) cos(wn) + Z r(m) sin(wm) sin(wn)
= er(w) cos(wn) + Sr(w) sin(wn)
= Ay(w)cos(¢r(w)) cos(wn) + Ap(w)sin(¢,(w))sin(wn)
= AT ((;J) COS(wn — ¢r (O.))) (trig identity, in the opposite direction)
¢:&J)
lv%%é — L e Ar(w)| W
“Sinusoid in, sinusoid out” (with modified amplitude & phase)
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LSI response to sinusoids

More generally, if input has amplitude A; and phase ¢, ,
xz(n) = Ay cos(wn — @)

then linearity and shift-invariance tell us that

cos(wn

amplitudes multiply phases add

or(w)

AA L e PSS

“Sinusoid in, sinusoid out” (with modified amplitude & phase)




The Discrete Fourier transform (DFT)

e Construct an orthogonal matrix of sin/cos pairs,
covering different numbers of cycles

® Frequency multiples of 27/N radians/sample,
(specifically, 2nk/N, for k=0,1,2,...N/2)

e For k=0 and k = N/2, only need the cosine part
(thus, N/2+1 cosines,and N/2 —1 sines)

e When we apply this matrix to an input vector, think
of output as paired coordinates

® Common to plot these pairs as amplitude/phase

[details on board...]
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Fourier Transform matrix
k=0 k=1 k=2 =3 k=N/2
F = % e o o
<27rk > X <2n’k >
cos | —n sm | —n (plotted sinusoids are continuous, N=32)
N N
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The Fourier family

signal domain

continuous discrete

continuous | Fourier transform | discrete-time Fourier transform

discrete Fourier series discrete Fourier transform l

frequency
domain

(we are here)

The “fast Fourier transform” (FFT) is a computationally efficient
implementation of the DFT, requiring Nlog(N) operations,
compared to the N2 operations that would be needed for matrix

multiplication.




LSI response to sinusoids
z(n) = cos(wn)
y(n) = Z r(m) cos (w(n —m))

= cr(w) cos(wn) + sr(w) sin(wn)

Ay (w) cos(¢r(w)) cos(wn) + Ap(w)sin(¢y(w)) sin(wn)

= A, (w)cos(wn — ¢r(w))

NOTE: These dot products are the Fourier transform
of the impulse response, r(m)!
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Fourier & LSI

VA yvA el
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Fourier & LSI

c(0)
¢z (1)
) T
c(2)
= NN

note: only 3 (of many) frequency components shown
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Fourier & LSI

Aa(1) T o

62(2)
Az(2) N\ /

note: only 3 (of many) frequency components shown

28

Fourier & LSI

A,0) ———————————— A,(0) x A, (0)
$2(1) or(1) + (1)

A1) T~ 44 L +z‘h(l)xAz(l) ~. _

6:(2) 6r(2) + ¢2(2)

Ax(2) ™\ /N / Ar(2) x A3(2) ™\ /N /
I
7 %&@
LSI systems are characterized by their frequency response,
specified by the Fourier Transform of their impulse response
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Complex exponentials:
“bundling” sine and cosine

e’ = cos(f) + isin()

" = cos(wn) + i sin(wn)

real part:

imaginary part:

[on board: inders of additi ltiplication of complex numbers]
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Complex exponentials:
“bundling” sine and cosine

eiwn L AT(L«)) ei(wn—qﬁur(u))) Ar(w) e—iqbr(w) elwn

— ezwn

F.T. of impulse response!
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Complex exponentials:
“bundling” sine and cosine
eiwn L AT(L«)) ei(wn—qﬁur(u))) — Ar(w) e—iqbr(w) elwn
_ eiwn
F.T. of impulse response!
L —
Note: the complex exponentials are eigenvectors!
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The “convolution theorem”

T e——p

convolve with 7~




The “convolution theorem”

—

Yy
convolve with 7
pointwise multiply by 7
y

wIojsuel], JOLINOH
ISIIAUI

Fourier Transform
[

—
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The “convolution theorem”
T + y
£ convolve with 7 g3
o c
Z a8 =
S = 5
& =E
5 5%
° pointwise multiply by 7 5
§=LZ=FRF'zZ = FTy=RFTz
K (diagonal matrix)
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Recap...

® Linear system
- defined by superposition

- characterized by a matrix

® Linear Shift-Invariant (LSI) system
- defined by superposition and shift-invariance
- characterized by a vector (the impulse response)

- OR, characterized by frequency response.
Specifically, the Fourier Transform of the impulse
response specifies an amplitude multiplier and a
phase shift for each frequency.




Discrete Fourier transform
(with complex numbers)

. i 27k
T = rpe "WE" where wy, = N
n=0
N-1
1 ~ TWEn .
Tn = == E Tk € (inverse)
N k=0

Redraw with spiral included!

[on board: why minus sign? why 1/N?]
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Visualizing the (Discrete)
Fourier Transform

® Two conventional choices for frequency axis:

= Plot frequencies from k=0 to k=N/2

(in matlab: 1 to N/2-1)

= Plot frequencies from k=-N/2 to N/2-1

(in matlab: use fftshift)

e Typically, plot amplitude (and possibly phase,
on a separate graph), instead of the real/
imaginary (cosine/sine) components
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More examples

® constant

® sinusoid (see next slide)
® impulse

® Gaussian - “lowpass”

[ ]

DoG (difference of 2 Gaussians) - “bandpass”

® Gabor (Gaussian windowed sinusoid) - “bandpass”

[on board]
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€™ = cos(wn) + isin(wn)

1 .
cos(wn) = §(€an + e

;i(eiwn _ e—iwn)

sin(wn) = 5

Example for k=2, N=32 (note indexing and amplitudes):

Z z = fit(Z) fitshift(z)
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What do we do with
Fourier Transforms?

* Represent/analyze periodic signals

* Analyze/design LSI systems. In particular,
how do you identify the nullspace?
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Retinal ganglion cells (1D)

Centre

Surround

Cell no. 124

'l
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1 1

Responsivity
(impulses per second)

SR BT A
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100
10
Spatial frequency (cycles per degree) .

patial frequency (¢/deg)

Enroth-Cugell and Robson (1984)
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Sampling causes “aliasing”

T T T

o

T T L

v
(INNDL AR

Sampling process is linear, but many-to-one (non-invertible)

“Aliasing” - one frequency masquerades as another jon board]

Given the samples, it is common/natural to assume, or enforce,

that they arose from the lowest compatible frequency...
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Effect of sampling on the Fourier Transform:
Sum of shifted copies
[ X (w)]
T
T .'I - T
—2m/A 2m/A
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Real-world
aliasing

downsample by 2

“Moiré pattern”




Pre-filtering to avoid spectral overlap (“aliasing”)

X(w) —[ L(w) ]—P/%—' Xs(w)

- VN
lowpass filter,
L(w) wat /A
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Real-world
aliasing

downsample by 2,

' '\with pre-filtering
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