
PSYCH-GA.2211/NEURL-GA.2201 – Fall 2017
Mathematical Tools for Neural and Cognitive Science

Homework 6

Due: 19 Dec 2017
(late homeworks penalized 10% per day)

See the course web site for submission details. Please: don’t wait until the day before the due
date... start now!

1. Reverse Correlation. Download from the course web page this function

[spikes, stimuli] = runGaussNoiseExpt(kernel, duration)

that simulates a white noise (reverse correlation) experiment. The kernel is a spatial weight-
ing vector, and duration specifies the total number of random stimuli that will be shown.
The function returns spikes, a binary vector indicating which stimuli produced spikes, and
stimuli, a matrix whose rows contain the simuli.

(a) Generate a 100-sample response vector by running the function on the spatial kernel

[-1 -2 0; -2 0 2; 1 2 0]/6

This is a matrix, which you’ll need to stretch out into a column vector (i.e., kernel(:))
before passing it into the function. Note that this kernel is unit-norm (sum of squares
of weights is one). Plot (on two subplots of the same figure) the linear filter response
to the stimuli (you should be able to compute this with a single matrix multiplication!)
and the spike train, both as functions of time. Do you see a relationship between these?
Display a 2D scatter plot of the raw stimulus intensities at positions 1 and 6, which
should look like samples of a 2D Gaussian. On top of this (use hold on), plot in red
only the stimulus intensities that produced spikes. Where in this 2D stimulus space do
the spikes occur? Does this match your expectations?

(b) Now compute the spike-triggered average (STA) for the simulated data from this “ex-
periment”. Rescale it to have unit norm, reshape it into a matrix, and display it as a
grayscale image. Display the true kernel next to it (use subplot). How similar is the
STA to the true kernel? Characterize the error of the STA, as a function of the duration
of the experiment. For durations 100, 200, 400, 800, 1600, 3200, 6400, run the experiment
100 times, compute the mean STA across these 100 runs, and subtract this from the true
kernel, and compute the sum of this difference kernel (the estimation bias). Also, sub-
tract the computed mean from the 100 STAs, and compute the average squared error
over these (the estimation variance). Plot the bias and square root of the variance as
functions of the duration – you might want to look at a log-log plot (matlab has a func-
tion loglog). What do you conclude about how the bias and variance behave, as a
function of the amount of data?

(c) Repeat the exercise above, but use the function runBinNoiseExpt, which uses binary
noise instead of Gaussian noise. Compare these plots to those for the Gaussian case.
How do they differ? Why?



hw6 2

(d) Estimate the nonlinearity of the response. Take the stimuli, spikes, and STA from the
experiment with duration 1600, project the stimuli onto the STA. Sort these projections
from highest to lowest (using matlab’s sort function) and re-order the spike vector
to maintain correspondence (the sort function will give you the indices of the sorted
values). For each consecutive group of 200 indices, compute the average projected
stimulus value, and the average number of spikes (you should collect these in two
vectors of length 16), and plot these against each other. You should see an estimate of
the spiking nonlinearity.

(e) Replot this nonlinearity with error bars, computed by bootstrapping. Draw a set of 1600
random integer indices in the range [1:1600], and use these to resample the projection
and spike vectors, and recompute the nonlinearity for this bootstrap-resampled data.
Note that unlike the case above, you’ll need to do this with a set of fixed position bins,
so that you can average across multiple bootstrap samples. Do this 100 times, to get 100
estimated nonlinearities. Plot the mean nonlinearity, and standard deviation, as points
with error bars (use the matlab function errorbar).

2. Simulating a 2AFC experiment. Consider a two-alternative forced choice (2AFC) psy-
chophysical experiment in which a subject sees two stimulus arrays of some intensity on
a trial and must say which one contains the target. (One and only one contains the target.)
Her probability of being correct on a trial is:

pc(I) = 1/2 + 1/2Φ(I;µ, σ)

where Φ(I;µ, σ) is the cumulative distribution function of the Gaussian (normcdf in matlab)
with mean µ and standard deviation σ evaluated at I . The function pc(I) is known as the
psychometric function. (Minor note, somewhat subtle: This setup only makes sense if I is on
a logarithmic scale, e.g., I = k logC , where C is stimulus contrast.)

(a) Plot two psychometric functions, for {µ, σ} equal to {5, 2} and {4, 3}. (Use I = [1 : 10]).
Describe the difference between these. If you increase µ, how does the curve change?
If you increase σ, how does the curve change? (If you are not sure, make more plots
with different parameter values.) What is the range of pc(I)? Explain why this range is
appropriate.

(b) Write a function C=simpsych(mu,sigma,I,T)which takes two vectors (I,T) of the
same length, containing a list of intensities and the number of trials for each intensity,
respectively, simulates draws from pc(I), and returns a vector, C , of the same length as
I and T , which contains the number of trials correct out of T , at each intensity I .

(c) Illustrate the use of simpsych with T=ones(1,7)*100 and I=1:7 for µ = 4 and
σ = 1. Plot C ./ T vs I (as points) and plot the psychometric function pc(I) (as a
curve) on the same graph.

(d) Do the same with T=ones(1,7)*10 and plot the results (including the psychometric
function). What is the difference between this and the plot of the previous question?

3. Fitting a psychometric function. Now we’ll flip things around, and use this probabilistic
model as a means of fitting/analyzing a simulated data set.

(a) Write a function nll = nloglik(mu,sigma,I,T,C) that returns the negative of the
log likelihood of parameters mu and sigma, for data set I,T,C.



hw6 3

(b) Generate a contour plot (function contour, using 50 lines) of the negative log likeli-
hood of the data set from part (c) of the previous problem, for all pairs of mu from
muall = [2:0.2:10] and a sigma from sigmaall = [0.5:0.2:6]. What is the
approximate location of the best fitting pair of parameters from this plot (determined
visually)?

(c) Use the function fminsearch to find the more precise values mu,sigma that minimize
the function nloglik(mu,sigma,). Three notes: first, the syntax for calling nloglik
within fminsearch is a bit odd:
fminsearch(@(x) nloglik(x(1),x(2),I,T,C), <startpoint>).
Here, the @ notation is used to create a temporary function, with argument x a vector
containing the two variables being optimized (mean and stdev). Second, fminsearch
minimizes rather than maximizes, which is why we must use the negative of the log
likelihood. Third, you’ll need to specify a start point for the search – for this problem,
[2,2] is a reasonable choice.

(d) A variant of fminsearch, fminunc, also returns the Hessian (the matrix of second
derivatives) of the negative log likelihood at the optimal mu and sigma. The inverse of
the Hessian provides an estimate of the covariance matrix of the parameter estimates.
Use this to determine 95% confidence intervals on each parameter (Hint: The marginal
standard errors for each parameter are the square roots of the diagonal entries of the
inverse Hessian; a 95% confidence interval is the mean plus or minus 1.96 standard er-
rors.) Do the true parameter values (4 and 1) fall within the confidence intervals? Note:
fminunc is less robust than fminsearch, and if the optimizer strays too far from the
true values, there may be numerical problems due to overflow of the likelihood; in this
case, try a different starting point.

(e) Produce a second set of confidence intervals for the parameters using a bootstrap method.
For each of the 7 intensities, resample 100 trials (correct or incorrect) from the 100 trials
of that intensity in the original data, with replacement. Refit the model to the resampled
data using fminsearch. Plot the histograms (function hist) of mu and sigma estimates
obtained over 500 such resampled datasets, and define your confidence intervals as the
region between the 2.5th and 97.5th percentiles of these distributions. How well do
these values agree with those from 2D?

4. Classification (decision) in a 2-dimensional space. Load the file fisherData.mat into
your MATLAB environment. The file contains two data matrices, data1 and data2, whose
rows contain hypothetical normalized responses of 2 mouse auditory neurons to different
stimuli – The first matrix contains responses to dogs barking, and the second are responses
to cat vocalizations. You would like to know whether the responses of these two neurons
could be used by the mouse to differentate the two types of sound. We’ll implement three
classifiers.

(a) First consider the linear discriminant corresponding to the difference in means of the
two data sets. Convince yourself (write the math) that this solution is the Maximum
Likelihood classifier under the assumption that the data are drawn from Gaussian dis-
tributions with identity (or any multiple of the identity) covariance. Visualize the so-
lution by generating a binary image showing the classification output. Specifically, use
meshgrid to generate X and Y coordinate images covering the a region that extends
a bit beyond the range of the data, compute images of the two Gaussians, with mean
matching the correponding data sets and identity covariance, and then calculate the



hw6 4

binary classifier by comparing the two Gaussian images (g1 ¡ g2). Display the image
using image (make sure to provide x and y coordinates), and plot the data on top of the
image. Now compute the discriminant vector (compute the differnece of the means of
each data set, and normalize to unit length). Plot this on the same graph as the decision
image, plot the linear discriminant vector, verifying that it is perpendicular to the de-
cision boundary (use axis equal to make the units on the two axes the same). What
fraction of the points are correctly classified by this classifier?

(b) Now use Fisher’s Linear Discriminant, which maximizes the average squared between-
class mean distance, while minimizing the sum of within-class squared distances (see
Notes on regression). This classifier is the ML solution when the data are drawn from
Gaussian distributions with different means, but the same covariance matrix (which
need not be a multiple of the identity!). Estimate the common covariance by averaging
together the covariances of the two data matrices. Repeat the plotting exercises of part
(a) to visualize the solution. Again, what fraction of the points are correctly classified
by this classifier?

(c) Finally, develop a Quadratic Classifier, that computes the Maximimum likelihood deci-
sion rule assuming the data are drawn from two different Gaussian distributions (i.e.,
each with its own mean and covariance). Specifically, estimate the mean and covari-
ance of data measured for each condition, and calculate the classifier that chooses the
class of each data point based on which of the two Gaussians has higher probability at
that location (write out the math). Repeat the plotting exercises of part (a) (except now
there’s no discriminant vector to plot). Calculate the fraction of correctly classified data
points. Which of the three classifiers is best? Do you think that would always be the
case, or are there data scenarios in which you might choose to use one of the inferior
classifiers?


