
PSYCH-GA.2211/NEURL-GA.2201 – Fall 2017
Mathematical Tools for Neural and Cognitive Science

Homework 5

Due: 1 Dec 2017
(late homeworks penalized 10% per day)

See the course web site for submission details. Please: don’t wait until the day before the due
date... start now!

1. Dueling estimators. In this problem, we use simulation to compare three estimators of the
mean of a Normal (Gaussian) distribution.

(a). First consider the average, which minimizes the sum of squared deviations, and is also
the Maximum Likelihood estimator. Generate 10,000 samples, each of size 10, from the
Normal(0,1) distribution (a 10x10000 matrix). Compute the average of each of the 10,000
samples. Plot a histogram of the resulting estimates (use 50 bins, and set the plot range to
[-2.3,2.3]). What shape should the histogram have (explain why)? What is the (theoretical)
variance of the average of 10 values drawn from a univariate Gaussian (derive this)? Is the
variance of your 10,000 estimates close to this?

(b). Now consider the median, which minimizes the sum of absolute deviations. Compute
the median of each of the 10,000 samples, and again plot a histogram. What shape does this
one have? Compare it to a normal distribution using the function normplot, which plots
the quantiles of a sample of data versus the normal quantiles (known as a Q-Q plot - if data
are normally distributed, the points shuld fall nearly on a straight line.) Does the distribution
of estimated values deviate significantly a Normal distribution? For comparison, you might
want to look at the Q-Q plot for estimates from part (a).

(c). Finally, consider an estimator that computes the average of the minimum and maximum
over the sample. Again, compute this estimate for each of your 10,000 samples, plot the
histogram, and examine and comment on the Q-Q plot.

(d). All three of these estimators are unbiased (because of the symmetry of the distribu-
tion), so we can use variance as the sole criterion for quality. Generate a new set of 10,000
samples, this time of size 256. Apply each estimator to sub-matrices of samples of size
{8, 16, 32, 64, 128, 256}, and compute the variance of each estimator for each. Plot these (on
a single log-log plot), along with a line showing the theoretically-computed variance of the
average estimator. Does the variance of all three estimators converge at the same rate (1/N )?
How much larger is the variance of the median estimator than the average estimator? How
large a sample would you need for the average and median estimators to achieve the same
variance as the average-extrema estimator on samples of size 256?

2. Bayesian inference of binomial proportions. Poldrack (2006) published an influential at-
tack on the practice of ”reverse inference” in fMRI studies, i.e. inferring that a cognitive
process was engaged on the basis of activation in some area. For instance, if Broca’s area
was found to be activated in some contrast, researchers might infer that the subjects were
using language. In a search of the literature, Poldrack found that Broca’s area was reported
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activated in 103 out of 869 fMRI contrasts involving engagement of language, but this area
was also active in 199 out of 2353 contrasts not involving language.

(a) Assume that the conditional probability of activation given language, as well as that of
activation given no language, each follow a Bernoulli distribution (i.e., active or not with
some probability as in the coin-flipping example in class). Compute the likelihoods of Pol-
drack’s observed frequencies of activation as functions of the possible values of their re-
spective Bernoulli probability parameters xl and xnl. Compute these functions at the values
x=[0:.001:1] and plot them as a bar chart.

(b) Find the value of x that maximizes each discretized likelihood function. Compare these
to the exact maximum likelihood estimates given by the formula for the ML estimator of a
Bernoulli probability.

(c) Using the likelihood functions computed for discrete x, compute and plot the discrete
posterior distributions P (x | data) and the associated cumulative distributions P (X ≤ x |
data) for both processes. For this, assume a uniform prior P (x) ∝ 1 and note that it will
be necessary to compute (rather than ignore) the normalizing constant for Bayes’ rule. Use
the cumulative distributions to compute (discrete approximations to) upper and lower 95%
confidence bounds on each proportion.

(d) Are these frequencies different from one another? Consider the joint posterior distribution
over xl and xnl, the Bernoulli probability parameters for the language and non-language
contrasts. Given that these two frequencies are independent, the (discrete) joint distribution
is given by the outer product of the two marginals. Plot it (with imagesc). Compute (by
summing the appropriate entries in the joint distribution) the posterior probabilities that
xl > xnl and, conversely, that xl ≤ xnl.

(e) Is this difference sufficient to support reverse inference? Using the estimates from part (b) as
the relevant conditional probabilities, and assuming the prior that a contrast engages lan-
guage, P (language) = 0.5, compute the probability P (language | activation) that observing
activation in this area implies engagement of language processes. Is Poldrack’s critique cor-
rect? How confident should you be in implicating language if you observe activity in Broca’s
area?

3. Psychopathy. You are interested in causes and treatment options for Psychopathy. You
obtained a dataset, contained in the file psychopathy.mat obtained from a prison for vio-
lent offenders in upstate New York (not everyone in the prison is a psychopath, but they are
more prevalent than in the general population). Each row represents data from one prisoner.
All study participants underwent a structural scan with a mobile, truck-mounted MRI. The
first data column contains the estimated cortical volume of paralimbic areas, relative to the
population median, in cm3. The second column contains the Hare Psychopathy Checklist
(PCL-R) scores, which range from 0 to 40 (the higher the score, the more psychopathic traits
someone exhibits). These scores are not distributed normally in the general population (me-
dian = 4) and definitely not normal in this subpopulation (median = 20). The third column
indicates whether they already participated in an experimental treatment program known
as decompression therapy (0 = did not yet participate, 1 = did already participate). To avoid
self-selection effects, everyone in this dataset agreed to the therapy, but prisoners were ran-
domly assigned to an earlier and a later treatment group, so that the untreated prisoners
could serve as a control group.

(a) You want to model PCL-R scores as a function of relative volume of paralimbic areas.
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Find a polynomial model that best explains the data [use cross-validation]. What de-
gree does it have?

(b) Use bootstrapping methods to estimate the 95% confidence interval of the average par-
alimbic volume of the decompression treatment group vs. the control group. If the
random assignment worked, the confidence intervals should overlap. Do they? Also,
do these data suggest that there is a statistically reliable difference to the general popu-
lation in terms of paralimbic volume?

(c) Do a suitable t-test to compare the mean PCL-R score of prisoners who did and did not
undergo decompression therapy. What is the p-value? Assuming an alpha-level of 0.05,
is this difference significant? Can you reject the null hypothesis that decompression
therapy is ineffective in terms of decreasing PCL-R scores?

(d) Do a permutation test to assess whether decompression therapy has an effect. Desig-
nate an appropriate test statistic and calculate its exact p value.


