
PSYCH-GA.2211/NEURL-GA.2201 – Fall 2017
Mathematical Tools for Neural and Cognitive Science

Homework 4

Due: 10 Nov 2017
(late homeworks penalized 10% per day)

See the course web site for submission details. Please: don’t wait until the day before the due
date... start now!

1. Bayes’ rule and eye color. A male and female chimpanzee have blue and brown eyes, re-
spectively. Assume a simple genetic model in which the gene for brown eyes is always
dominant (so that the trait of blue eyes can only arise from two blue-eyed genes, but the trait
of brown eyes can arise from two brown-eyed genes, or one of each). You can also assume
that the apriori probability that the female has either of these gene configurations is 50%.

(a) Suppose you observe that they have a single child with brown eyes. What is the prob-
ability that the female chimp has a blue-eyed gene?

(b) Suppose you observe that they have a second child with brown eyes. Now what is the
probability?

(c) Generalizing, suppose they have N children with brown eyes... express the probability,
as a function of N .

2. Sums of random variables. Consider a discrete distribution specified by a vector p of
length n whose elements provide the frequency of occurrence of each of the integers 1 . . . n.
(The values in p should be non-negative and sum to 1).

(a) Write a function samples = randp(p, num) that generates num samples from the
PDF specified by p. Test your function by choosing some arbitrary p of length 10,
drawing 1,000 samples, plotting a histogram of how many times each value is sampled,
and comparing this to the frequencies predicted by p.

(b) Next, write a function psum(p, q) that, given two such discrete PDFs, returns a vector
encoding the PDF for the sum of a sample drawn from p and a sample drawn from q.
(Hint: the output vector should have length m+n− 1 when m and n are the lengths of
the two input PDFs.)
Test your function by letting p = [1:6] / sum([1:6]) (a weighted die), and using
repeated calls to psum to compute the PDF predicted for a sum of five rolls of the die.
Use your function randp to generate 5 sets of 1000 samples from p; plot a histogram of
how many times each sum is sampled; and compare this the frequencies predicted by
your program.

3. The Central Limit theorem. The Central Limit theorem states that the distribution of the
average of a set of samples (drawn independently, from any distribution with finite mean
and variance) gets closer and closer to a Normal (Gaussian) distribution as the size of the
sample increases. Specifically, if the mean and variance of the original distribtion are µ and
σ, the distribution of the average converges to N (µ, σ/

√
n) as n increases.
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(a) Generate 1,000 samples of two values each from a uniform distribution (use rand).
Compute the average of each sample (pair of values), and plot a histogram of these.
What shape is it, approximately? Why? If you’re unsure, try it again with more samples
(e.g., 100,000).

(b) Now try this again with samples containing 3 values. How has the histogram changed?
Try sample sizes of 4 and 5 as well. When do you judge that the histogram starts looking
Normal?

(c) Let’s test the Normality of the distribution a bit more carefully, using a “Q-Q” (quantile-
quantile) plot, which plots the quantiles of one distribution against another. If the two
distributions match, the values should lie on a unit-slope line. For this problem, you can
use the function normplot, which plots the quantiles of a sample of data against those
of a Normal distribution of the same mean and variance. First, try this on a sample of
1,000 values from a normal distribution (use randn). The points should fall (close to) a
straight line, indicating that the sample is close to normal, as expected. Try this a few
times to see how the plot varies (you might want to put them on the same graph, using
matlab’s hold on command).

(d) Now call normplot on a sample of 1,000 values from a uniform distribution. Explain
qualitatively why it has the shape it does (hint: think about the quantiles of the uniform
and Normal distributions). Do this for averages of uniform samples of different size (2,
3, 4, ...). Keep increasing sample size until you cant tell the resulting QQ plot from the
QQ plots for samples from a normal distribution. How big does the sample have to be?

4. Multi-dimensional Gaussians.

(a) Write a function samples = ndRandn(mean, cov, num) that generates a set of
samples drawn from a multidimensional Gaussian distribution with the specified mean
(an N-vector) and covariance (an NxN matrix). The parameter num should be optional
(defaulting to 1) and should specify the number of samples to return. The returned
value should be a matrix with num rows each containing a sample of N elements. (Hint:
use the MATLAB function randn to generate samples from an N-dimensional Gaus-
sian with zero mean and identity covariance matrix, and then modify these appropri-
ately. Recall that the covariance of Y = MX is E(Y Y T ) = MCXMT where CX is the
covariance of X).

(b) Test your function by plotting 1000 samples of a 2-dimensional Gaussian (choose an
arbitrary nonzero mean and nonzero covariance). Measure the sample mean and co-
variance of your data points, comparing to the values that you requested when calling
the function. Plot an ellipse on top of the scatterplot that traces out points that are two
standard deviations away from the mean, according to the covariance matrix. Does this
ellipse capture the shape of the data?

(c) Now consider the generalized marginal distribution of your 2-D Gaussian in which
samples are projected onto a unit vector �u to obtain a 1-D distribution. Write a mathe-
matical expression for the mean and variance of this marginal distribution as a function
of �u and check it for a set of 48 unit vectors spaced evenly around the unit circle. For
each of these, compare the mean and variance predicted from your mathematical ex-
pression to the sample mean and variance estimated by projecting your 1,000 samples
onto �u. Plot the mathematical mean and the sample mean (on the same plot), and also
plot the mathematical variance and the sample variance.


