
PSYCH-GA.2211/NEURL-GA.2201 – Fall 2017
Mathematical Tools for Neural and Cognitive Science

Homework 3

Due: 26 Oct 2017
(late homeworks penalized 10% per day)

See the course web site for submission details. Please: don’t wait until the day before the due
date... start now!

1. Principal components. Load the file PCA.mat into your MATLAB environment. You’ll
find a matrix M containing responses of a population of 14 neurons, under 150 different
experimental conditions (each column contains the estimated firing rate of one neuron under
each of the conditions). We cannot directly visualize data of this many dimensions, but we
can use linear algebra tools to project them into lower dimensional space.

(a) Compute the principal components of the 14-dimensional population responses. First,
center the data by subtracting the mean response mean(M) from every row of the ma-
trix (hint: you might find the function repmat helpful). Call this re-centered data ma-
trix M̃ . Then compute the eigenvectors and eigenvalues of M̃T M̃ (alternatively, you
can compute the singular values of M̃ ). Plot the eigenvalues (or singular values). What
do you think is the “true” dimensionality of the responses?

(b) Project the data in M̃ onto the first principal component (i.e., the eigenvector corre-
sponding to the maximal eigenvalue). Plot a histogram (using hist) of these values.
Show that the sum of squares of these values is equal to the first eigenvalue λ1. What
proportion of the total variability of the data (sum of squared lengths of all data vectors,
which is just the sum of squares of all entries of M̃ ) does this component account for?

(c) Show a scatter plot of the data projected onto the first two principal components (that
is, plot the inner product of the data with the first component versus the inner product
with the second component). You can use plot (with circular plot symbols and no
connecting lines), or use scatter. Use axis(’equal’) to set the two axes to use
equal scales. Show that the sum of the squared lengths of these projected vectors is
equal to λ1 + λ2. What proportion of the total variability of the data do these two
components account for?

(d) It appears that much of the response in this 14-neuron population can be explained by
the projection into this 2-dimensional space. Now we’d like to interpret this result back
in the space of the original responses. Plot the two eigenvectors that you computed in
the previous answer, on a single graph. What combinations of neurons do they suggest?
In particular, could you categorize the neurons based on the weights indicated by the
elements of these two eigenvectors? What if another researcher discovered that these
neurons were wired up in a way that each neuron drove one of four muscle groups,
each responsible for rotating the eye in one of the four cardinal directions (right, left,
up, down)?

2. Linear shift-invariant (time-invariant) systems. Written exercises: Oppenheim & Schafer,
problems 2.35 and 2.36 [see attached pages]. Please explain your answers! Note: Index values
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n in this problem represent time, and can be positive or negative. The δ[n] denotes the
standard “impulse” vector (zero everywhere except at index n = 0, where it is one).

3. LSI system characterization. You are experimenting with three unknown systems, embod-
ied in compiled matlab functions unknownSystemX.p, (with X=1,2,3), that each take an
input column vector of length N = 64. The response of each is a column vector (of the
same length). Your task is to examine them to see if they behave like they’re linear and/or
shift-invariant with circular (periodic) boundary-handling. For each system,

(a) “Kick the tires” by measuring the response to an impulse in the first position of an input
vector. Check that this impulse response is shift-invariant by comparing to the response
to an impulse in a few later positions. Also check that the response to a sum of two of
these impulses is equal to the sum of their individual responses.

(b) If the previous tests were positive, examine the response of the system to sinusoids
with frequencies {2π/N, 4π/N, 6π/N, 12π/N}, and random phases, and check whether
the outputs are sinusoids of the same frequency (i.e., verify that the output vector lies
completely in the subspace containing all the sinusoids of that frequency).

(c) If the previous tests were positive, verify that the change in amplitude and phase from
input to output is predicted by the amplitude (abs) and phase (angle) of the corre-
sponding terms of the Fourier transform of the impulse response. If not, explain which
property (linearity, or shift-invariance, or both) seems to be missing from the system.

4. Gabor filter.
(a) Create a one-dimensional linear filter that is a product of a Gaussian and a sinusoid,
exp

(
− n2

2σ2

)
cos(ωn), with parameters σ = 3.5 and ω = 2π ∗ 10/64 samples. The filter should

contain 25 samples, and should be centered on the middle (13th) sample. Plot the filter to
verify that it looks like what you’d expect. Plot the amplitude of the Fourier transform of
this filter, sampled at 64 locations (MATLAB’s fft function takes an optional additional
argument). What kind of filter is this? Why does it have this shape, and how is the shape
related to the choice of parameters (σ, ω)?

(b) If you were to convolve this filter with sinusoids of different frequencies, which of them
would produce a response with the largest amplitude? Obtain this answer by reasoning
about the equation defining the filter (above), and also by finding the maximum of the com-
puted Fourier amplitudes (using the max function), and verify that the answers the same.
Compute the period of this sinusoid, measured in units of sample spacing (hint: this is the
inverse of its frequency, in cycles/sample), and verify by eye that this is roughly matched
to the oscillations in the graph of the filter itself. Which sinusoids would produce responses
with about 25% of this maximal amplitude?

(c) Create three unit-amplitude 64-sample sinusoidal signals at the three frequencies (low,
mid, high) that you found in part (b). Convolve the filter with each, and verify that the
amplitude of the response is approximately consistent with the answers you gave in part (b).
(hint: to estimate amplitude, you’ll either need to project the response onto sine and cosine
of the appropriate frequency, or compute the DFT of the response and measure ampitude at
the appropriate frequency).








