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Probability, Statistics and Inference

Probability: an abstract mathematical
framework for describing random quantities
(e.g., measurements)

Statistics: use of probability to summarize,
analyze, interpret data. Fundamental to all
experimental science.




Probabilistic Middleville

In Middleville, every family has two children, brought by
the stork.

The stork delivers boys and girls randomly, with equal
probability. robab‘\\'\s\’.\c model

You pick a family at random and discover that one of the
children is a girl. data

What is the probability that the other child is a girl? ce
stat'\st'\ca\ inferen

Statistical Middleville

In Middleville, every family has two children, brought by
the stork.

The sto i and girls raj Wi ua
probabili

In a survey of 100 Middleville families, 32 have two girls,
24 have two boys, and the remainder have one of each.

You pick a family at random and discover that one of the
children is a girl.

What is the probability that the other child is a girl?




Statistics it the science of learning from experience, espocindly ex
perience that arrives a little bit at a time. 'U'ze earliest information
statistics, originating in about 1650, This century has
teal technioues become the Ivtic methoda of choice
vehology, edlucatiog, economics, communi-
cations theary, sociology, genetic studies. epidemiolowy, and uiher
areas. Recently, traditional sciences like geology, physics, and os-
tronomy have begun to make increasing use of statistical methods
as Lhey [oeus on areas that demand informational efficiency, such as
the study of rare and exotic particles or extremely distant pakxies.
Mast people are not natural-born szatisticiens. Left <o cur cwn
devices we are not very good at picking out patterns from o sca
of noisy data, To put il anuther way, we are 2! 1oo gond at pick-
ing cu: non-existent puacterns that heppen Lo suil one porposes.
Statistical theory attacks the problem from both ends, It pro ]
optimal methods for fincing & real signal in & noisy background,
and alie provides stricl checks against the overinterpretetion of
random patterns.

science wi

seen st
in Tiunedical scienee, s

- Efron & Tibshirani, Introduction to the Bootstrap

Some historical context

e 1600’s: Early notions of data summary/averaging
® 1700’s: Bayesian prob/statistics (Bayes, Laplace)
e 1920’s: Frequentist statistics for science (e.g., Fisher)

® 1940°’s: Statistical signal analysis and communication,
estimation/decision theory (Shannon, Wiener, etc)

® 1970’s: Computational optimization and simulation
(e.g,. Tukey)

e 1990’s: Machine learning (large-scale computing +
statistical inference + lots of data)

e Since 1950’s: statistical neural/cognitive models




Scientific process

Observe / measure data

Summarize/fit ,
compare with predictions

Generate predictions,
design experiment

Create/modify
hypothesis/model

Estimating model parameters

e How do I compute the estimate?
(mathematics vs. numerical optimization)

® How “good” are my estimates?

® How well does my model explain the data?
Future data (prediction/generalization)?

® How do I compare two (or more) models?




Outline of what’s coming

Themes:

® Uni-variate vs. multi-variate

e Discrete vs. continuous

® Math vs. simulation

e Bayesian vs. frequentist inference
Topics:

® Descriptive statistics

® Basic probability theory: univariate, multivariate

® Model parameter estimation

Hypothesis testing / model comparison

Example: Localization

Issues: Mean and variability (accuracy and
precision)




Descriptive statistics: Central tendency

We often summarize data with the average. Why?

Average minimizes the squared error (think regression!)
N
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More generally, for L, norms: [ 1 Z I :i:|”]

n -
minimum L; norm: median i=1
minimum Lonorm: mode

Issues: Data from a common source, outliers,
asymmetry, bimodality

Descriptive statistics: Dispersion

. 1 & 2
e Sample variance L p— —-X
P K N1 ; (xl x)
e Why N-1?
e Sample standard deviation
o X, —X ‘

N
Mean absolute deviation %Z
i=1




Example: Localization

I find that x #0 . Is that convincing? Is the apparent
bias real?

To answer this, we need tools from probability...

Probability: notation

let X, Y, Z be random variables

they can take on values (like ‘heads’ or ‘tails’; or integers 1-6; or
real-valued numbers)

let x, y, z stand generically for values they can take,
and also, in shorthand, for events like X = x

we write the probability that X takes on value x as
P(X =x), or Px(x), or sometimes just P(x)

Il

P(x) is a function over x, which we call the probability “distribution’
function (pdf) (or, for continuous variables only, “density”)




Discrete pdf

A distribution
(the sum of 2 dice rolls)

Continuous pdf

Another distribution
(IQ or a randomly chosen person)
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Probability basics

® discrete probability distributions

® continuous probability densities

e cumulative distributions

e translation and scaling of distributions

e monotonic nonlinear transformations

e drawing samples from a distribution.
Uniform. Inverse cumulative mapping

e cxample densities/distributions

[on board]

Example distributions

a not-quite-fair coin

roll of a fair die

sum of two rolled fair dice
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clicks of a Geiger counter,
in a fixed time interval
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horizontal velocity of gas
molecules exiting a fan
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Expected value - discrete

E(X)= ixip(xi) [the mean, p]

P

Expected value - continuous

E(z) = /ac p(z) dx [the mean, p]
E(a?) = / 2? p(x) dx [the “second moment”]
E((z—p)?) = /(x —1)? p(x) dx [the variance, 0°]

— [ pla) da 4

E(f(z)) = /f(:c) p(x) dx note: an inner product,
and thus linear; i.e.,

E(af (X)+bg(X)) = aE(f(X))+bE(g(X))




Joint and conditional probability - discrete
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Multi-variate probability

* Joint distributions

* Marginals (integrating)
* Conditionals (slicing)

* Bayes’ Rule (inverting)

* Statistical independence (separability)

[on board]

Joint distribution
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Marginal distribution

p(xay)

p(z) = /p(fl?,y)dy Zo.015

0.01

0.005 v A

%0 100 150
X

Conditional probability

A&B

Neither A nor B

p(4& B)
p(B)

p(A| B) = probability of 4 given that B is asserted to be true =




Conditional distribution

p(z,y) p(zly = 68)

0.03

0.025

0.02

0.015

0.01

0.005

%0 100 150
X
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More generally:
p(zly) =

((E Y /p(y slice joint distribution normalize (by marginal)
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Bayes’ Rule

A&B

p(A| B)= probability of 4 given that B is asserted to be true = P(A(—‘;f)m
p

P(A&B)=p(B)p(A|B)
= p(A)p(B| 4)

415y 2BIADPA)
= p(4]B) »(B)

Bayes’ Rule

LI An Effay towards folving a Problem in
the Doétrine of Chances. By the late Rev.
My Bayes, F. R. 8. communicated by Mr.
Price, in a Letter to John Canton, A. M.

F.R.S.

Dear Sir,
Read Dec. 23, J Now fend you an effay which I have

1763 found among the papers of our de-
ceafed friend Mr. Bayes, and which, in my opinion,
has great merit, and well deferves to be preferved.

p(zly) = p(ylz) p(z)/p(y)

(a direct consequence of the definition of conditional probability)




Conditional vs. marginal
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In general, these differ.

When are they they same? In particular, when are all
conditionals equal to the marginal?

Statistical independence

Random variables X and Y are statistically
independent if (and only if): »

p(x,y)=p(x)p(y) Vx,y

80 90 100 110 120
x

[note: for discrete distributions, this is an outer product!]

Independence implies that a// conditionals are equal to the
corresponding marginal:

p(x|y)=p(x,y)/ p(y)=p(x) Vx,y




Sums of independent RVs
For any two random variables (independent or not):
E(X+Y)=E(X)+E(Y)
Suppose X and Y are independent, then
E(XY)=E(X)E(Y)
2 2 2 2
Oy = E(((X+ Y)—(uXJqu)) )=0'X+0'Y
and p,,,(2) isa convolution

Implications: (1) Sums of Gaussians are Gaussian,
(2) Properties of the sample average

Mean and variance

¢ Mean and variance summarize centroid/width
* translation and rescaling of random variables
* nonlinear transformations - “warping”
* Mean/variance of weighted sum of random variables
* The sample average
e ...converges to trug mean (except for bizarre distributions)
o

e ... with variance

e ... most common common choice for an estimate ...




Point Estimates

e Estimator: Any function of the data, intended to compute
an estimate of the true value of a parameter

® The most common estimator is the sample average, used
to estimate the true mean of the distribution.

— -

® Statistically-motivated examples:  Z(d) = argmax p(d|x)
= Maximum likelihood (ML): #(d) = arg max p(z|d)
- Max a posteriori (MAP):  &(d) = argmin E ((x - i)g\cf)

= Min Mean Squared Error =E (x|cf)
(MMSE):

Example: Estimate the bias of a coin




Bayes’ Rule and Estimation

Posterior Likelihood Prior

p(data | parameter value) p(parageter value)
p(data)

p(parameter value | data) =

Nuisance normalizing term




Likelihood: 1 head Likelihood: 1 tail
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example

infer whether a coin is fair by flipping it repeatedly
here, 1+ is the probability of heads (50% is fair)
1..» are the outcomes of flips

Consider three different priors:

suspect fair suspect biased no idea
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previous posteriors
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Posteriors after observing 75 heads, 25 tails
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- prior differences are ultimately overwhelmed by data

Confidence
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Bias & Variance

* Mean squared error = bias”"2 + variance

* Bias is difficult to assess (requires knowing the “true”
value). Variance is easier.

* Classical statistics generally aims for an unbiased
estimator, with minimal variance (“MVUE”).

* The MLE is asymptotically unbiased (under fairly
general conditions), but this is only useful if

- the likelihood model is correct
- the optimum can be computed
- you have enough data

* More general/modern view: estimation is about trading
off bias and variance, through model selection,
“regularization”, or Bayesian priors.

Bayesian Model Comparison

o [s the coin fair? Compared to what?
e Point hypotheses: M] :p=p = 0.5 M2 :p=p, =0.6
p(D|M)P(M ) _ p(D|M)P(p)

p(D) p(D)

p(M,| D)=

Assuming equal priors over models the Bayes factor is

p(M,|D) _ p(D|M)P(M,) _ p(D|M,)P(p)
p(M, D) p(D|M)P(M,) p(D|M,)P(p,)




Bayesian Model Comparison

® s the coin fair? Compared to what?
® Alternative hypothesis: M, :p=p =05 M, :p+#0.5

p(D|M,)p(M,)
p(D)

1
= j() p(pcoin ‘D)p(pcoin)dpcoin
1
J.() p(D ‘ MZ’pcoin)p(pcoin)dpcoinP(MZ)
p(D)

Compute Bayes factor as before.

p(M,|D)=

The Gaussian

=
8
Il
¥
q
)
[\

* parameterized by mean and stdev (position / width)

* joint density of two indep Gaussian RVs is circular! [easy]
* product of two Gaussians is Gaussian! [easy]

e conditionals of a Gaussian are Gaussian! [easy]

* sum of Gaussian RVs is Gaussian!

* marginals of a Gaussian are Gaussian!

* central limit theorem: sum of many RVs is Gaussian! [hard
* most random (max entropy) density with this variance!




Product of Gaussians is Gaussian
Yy=x+n, INN(/LI,UI),HNN(O,O'TL)

p(zly) o< plylr)p(z)

Product of Gaussians is Gaussian
y=x+n, x~ N(ug0z), n~N(0,0,)

plaly) o« plylp)
B e e Ty
Completing the square shows that this
posterior is also Gaussian, with

5 11
Un UI
Yo Mz 1 1
“:(E*%)/(aﬁz)

(average, weighted by inverse variances!)




Gaussian densities

Y= e ¢
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mean: [0.2,0.8]
cov: [1.0-0.3;
-0.3 04]
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Marginal:

N

(known as the “precision” matrix)
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Generalized marginals of a Gaussian

T~ N(fig,Cy)

8]

p(z)is Gaussian, with:

pe = il
o2 = 4TCui
2
W
true density 700 samples
Measurement
(sampling)
A
Inference
true mean: [0 0.8] sample mean: [-0.05 0.83]
true cov: [1.0 -0.25 sample cov: [0.95 -0.23

-0.25 0.3] -0.23 0.29]




Central limit for a uniform distribution...

10k samples, uniform density (sigma=1) (ug + lt2)/\/§

(uy + up + ug + ug)/V4

Central limit for a binary distribution...

one coin avg of 16 coins
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