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Fall semester, 2017

Probability: an abstract mathematical 
framework for describing random quantities 
(e.g., measurements)

Statistics:  use of probability to summarize, 
analyze, interpret data.   Fundamental to all 
experimental science.



Probabilistic Middleville

The stork delivers boys and girls randomly, with equal 
probability. 

probabilistic model

data

statistical inference

In Middleville, every family has two children, brought by 
the stork. 

You pick a family at random and discover that one of the 
children is a girl. 

What is the probability that the other child is a girl? 

Statistical Middleville
In Middleville, every family has two children, brought by 
the stork. 

You pick a family at random and discover that one of the 
children is a girl. 

What is the probability that the other child is a girl? 

In a survey of 100 Middleville families, 32 have two girls, 
24 have two boys, and the remainder have one of each.

The stork delivers boys and girls randomly, with equal 
probability. 



- Efron & Tibshirani, Introduction to the Bootstrap

Some historical context

• 1600’s: Early notions of data summary/averaging

• 1700’s: Bayesian prob/statistics (Bayes, Laplace)

• 1920’s: Frequentist statistics for science (e.g., Fisher)

• 1940’s: Statistical signal analysis and communication, 
estimation/decision theory (Shannon, Wiener, etc)

• 1970’s: Computational optimization and simulation 
(e.g,. Tukey)

• 1990’s: Machine learning (large-scale computing + 
statistical inference + lots of data)

• Since 1950’s: statistical neural/cognitive models



Scientific process

Summarize/fit ,
compare with predictions

Create/modify
hypothesis/model

Generate predictions,
design experiment

Observe / measure data

Estimating model parameters

• How do I compute the estimate?  
(mathematics vs. numerical optimization) 

• How “good” are my estimates?  

• How well does my model explain the data?   
Future data (prediction/generalization)? 

• How do I compare two (or more) models?



Outline of what’s coming
Themes:

• Uni-variate vs. multi-variate

• Discrete vs. continuous

• Math vs. simulation

• Bayesian vs. frequentist  inference

Topics:
• Descriptive statistics

• Basic probability theory: univariate, multivariate 

• Model parameter estimation

• Hypothesis testing / model comparison

Example: Localization

Issues: Mean and variability (accuracy and 
precision)



Descriptive statistics: Central tendency
• We often summarize data with the average.  Why?

• Average minimizes the squared error (think regression!)

• More generally, for Lp norms: 

• minimum L1 norm: median

• minimum L0 norm: mode

• Issues: Data from a common source, outliers, 
asymmetry, bimodality
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Descriptive statistics: Dispersion

• Sample variance

• Why N-1?

• Sample standard deviation

• Mean absolute deviation
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Example: Localization

I find that          . Is that convincing? Is the apparent 
bias real?
To answer this, we need tools from probability…

x ≠ 0

Probability: notation
let X, Y, Z be random variables 

they can take on values (like ‘heads’ or ‘tails’; or integers 1-6; or 
real-valued numbers) 

let x, y, z stand generically for values they can take, 
and also, in shorthand, for events like X = x 

we write the probability that X takes on value x as 
P(X = x),  or PX(x),  or sometimes just P(x) 

P(x) is a function over x, which we call the probability “distribution”  
function (pdf) (or, for continuous variables only, “density”)



A distribution 
(the sum of 2 dice rolls)

Another distribution 
(IQ or a randomly chosen person)

P(
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Discrete pdf Continuous pdf
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Probability basics

• discrete probability distributions

• continuous probability densities

• cumulative distributions

• translation and scaling of distributions  

• monotonic nonlinear transformations

• drawing samples from a distribution.  
Uniform.  Inverse cumulative mapping

• example densities/distributions
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clicks of a Geiger counter, 
in a fixed time interval

horizontal velocity of gas 
molecules exiting a fan... and, time between clicks

Example distributions
roll of a fair die

-
0 1 2 4 53 6 7 8 9 10



Expected value - discrete

[the mean,    ]µE(X ) = xi p(xi )
i=1
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Expected value - continuous

E(x) =

Z
x p(x) dx
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[the “second moment”]
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note: an inner product, 
and thus linear, i.e.,

E(af (X )+ bg(X )) = aE( f (X ))+ bE(g(X ))



Joint and conditional probability - discrete

Joint and conditional probability - discrete

P(Ace) 
P(Heart) 
P(Ace & Heart) 
P(Ace | Heart) 
P(not Jack of Diamonds) 
P(Ace | not Jack of Diamonds)

“Independence”



• Joint distributions

• Marginals (integrating)

• Conditionals (slicing)

• Bayes’ Rule (inverting)

• Statistical independence (separability)

Multi-variate probability

[on board]

p(x, y)

Joint distribution



p(x) =

Z
p(x, y)dy

p(x, y)

Marginal distribution

Conditional probability

A B
A & B

p(A | B) = probability of A given that B is asserted to be true = 
p(A& B)
p(B)

Neither A nor B



p(x, y) p(x|y = 68)

Conditional distribution

p(x|y = 68) = p(x, y = 68)

�Z
p(x, y = 68)dx

= p(x, y = 68)
.
p(y = 68)

P
(x

|Y
=6

8)

Conditional distribution

slice joint distribution normalize (by marginal)

- -

p(x|y) = p(x, y)/p(y)

More generally:



Bayes’ Rule

A B
A & B

p(A& B) = p(B)p(A | B)

= p(A)p(B | A)

⇒ p(A | B) = p(B | A)p(A)
p(B)

p(A | B) = probability of A given that B is asserted to be true = 
p(A& B)
p(B)

Bayes’ Rule

p(x|y) = p(y|x) p(x)/p(y)

(a direct consequence of the definition of conditional probability)



P(x|Y=120)

P(x)

Conditional vs. marginal

In general, these differ. 
When are they they same?  In particular, when are all 
conditionals equal to the marginal?

-

-

Statistical independence

Random variables X and Y are statistically 
independent if (and only if):

Independence implies that all conditionals are equal to the 
corresponding marginal: 

p(x, y) = p(x)p( y) ∀ x, y

p(x | y) = p(x, y) / p( y) = p(x) ∀ x, y

[note: for discrete distributions, this is an outer product!]



Sums of independent RVs

Suppose X and Y are independent, then

E(XY ) = E(X )E(Y )

σ X+Y
2 = E X +Y( )− µX + µY( )( )2⎛

⎝
⎞
⎠ =σ X

2 +σ Y
2

and                 is a convolutionpX+Y (z)

Implications: (1) Sums of Gaussians are Gaussian, 
(2) Properties of the sample average

E(X +Y ) = E(X )+ E(Y )

For any two random variables (independent or not):

• Mean and variance summarize centroid/width

• translation and rescaling of random variables

• nonlinear transformations - “warping”

• Mean/variance of weighted sum of random variables

• The sample average

• ... converges to true mean (except for bizarre distributions)

• ... with variance 

• ... most common common choice for an estimate  ...

Mean and variance



• Estimator: Any function of the data, intended to compute 
an estimate of the true value of a parameter

• The most common estimator is the sample average, used 
to estimate the true mean of the distribution.

• Statistically-motivated examples:

- Maximum likelihood (ML):  

- Max a posteriori (MAP):

- Min Mean Squared Error  
(MMSE):

Point Estimates

Example: Estimate the bias of a coin



Bayes’ Rule and Estimation

p(parameter value | data) = p(data | parameter value)p(parameter value)
p(data)

Posterior PriorLikelihood

Nuisance normalizing term



Likelihood: 1 head Likelihood: 1 tail

More heads

M
ore tails

T=0

1

2

3

2 31H=0

Posteriors, p(H,T|x), assuming prior p(x)=1



example
infer whether a coin is fair by flipping it repeatedly 
here, x is the probability of heads (50% is fair) 
y1...n are the outcomes of flips 

Consider three different priors: 
 suspect fair suspect biased no idea

 prior fair prior biased prior uncertain

   X likelihood (heads)

   = posterior



   previous posteriors

   X likelihood (heads)

   = new posterior

   previous posteriors

   X likelihood (tails)

   = new posterior



Posteriors after observing 75 heads, 25 tails 

àprior differences are ultimately overwhelmed by data

PDFs

CDFs

10H / 5T 20H / 10T2H / 1T

.975

.025
.19 .93 .49 .80

Confidence



Bias & Variance
• Mean squared error = bias^2 + variance 
• Bias is difficult to assess (requires knowing the “true” 

value). Variance is easier. 
• Classical statistics generally aims for an unbiased 

estimator, with minimal variance (“MVUE”). 
• The MLE is asymptotically unbiased (under fairly 

general conditions), but this is only useful if 
- the likelihood model is correct 
- the optimum can be computed 
- you have enough data  

• More general/modern view: estimation is about trading 
off bias and variance, through model selection, 
“regularization”,  or Bayesian priors.

• Is the coin fair? Compared to what?

• Point hypotheses: 

Bayesian Model Comparison

M1 : p = p1 = 0.5 M2 : p = p2 = 0.6

p(M1 |D) =
p(D | M1)P(M1)

p(D)
=
p(D | M1)P( p1)

p(D)

Assuming equal priors over models the Bayes factor is 

p(M1 |D)
p(M2 |D)

=
p(D | M1)P(M1)
p(D | M2 )P(M2 )

=
p(D | M1)P( p1)
p(D | M2 )P( p2 )



• Is the coin fair? Compared to what?

• Alternative hypothesis: 

Bayesian Model Comparison

M1 : p = p1 = 0.5 M2 : p ≠ 0.5

p(M2 |D) =
p(D | M2 )p(M2 )

p(D)

= p( pcoin |D)p( pcoin )dpcoin0

1

∫

=
p(D | M2 , pcoin )p( pcoin )dpcoin0

1

∫ P(M2 )

p(D)

Compute Bayes factor as before. 

The Gaussian

• parameterized by mean and stdev (position / width)
• joint density of two indep Gaussian RVs is circular!   [easy]

• product of two Gaussians is Gaussian!   [easy] 
• conditionals of a Gaussian are Gaussian!   [easy]

• sum of Gaussian RVs is Gaussian!     [moderate]

• marginals of a Gaussian are Gaussian!    [moderate]
• central limit theorem: sum of many RVs is Gaussian!   [hard]

• most random (max entropy) density with this variance! [moderate]



Product of Gaussians is Gaussian

Completing the square shows that this 
posterior is also Gaussian, with

(average, weighted by inverse variances!)

∝

Product of Gaussians is Gaussian

Completing the square shows that this 
posterior is also Gaussian, with

(average, weighted by inverse variances!)
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mean:  [0.2, 0.8]
cov:  [1.0 -0.3;

 -0.3  0.4]

Gaussian densities

~x ⇠ N(~µ,C), let P = C

�1

Gaussian, with:

Conditional:

p(x1) =

Z
p(~xdx2

Marginal:

Gaussian, with:

(known as the “precision” matrix)
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Generalized marginals of a Gaussian

x1

x2

w

is Gaussian, with:

true mean: [0 0.8]
true cov: [1.0 -0.25

-0.25 0.3]

sample mean: [-0.05 0.83]
sample cov: [0.95 -0.23

-0.23 0.29]

700 samples

Measurement
(sampling)

Inference

true density
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Central limit for a uniform distribution...

10k samples, uniform density (sigma=1)
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Central limit for a binary distribution...


