
Review of Linear Systems Theory

The following is a (very) brief review of linear systems theory, convolution, and Fourier anal-
ysis. I work primarily with discrete signals, but each result developed in this review has a
parallel in terms of continuous signals and systems. I assume the reader is familiar with lin-
ear algebra (as reviewed in my handout Geometric Review of Linear Algebra), and least squares
estimation (as reviewed in my handout Least Squares Optimization).

1 Linear shift-invariant systems

A system is linear if (and only if) it obeys the principle of superposition: the response to a
weighted sum of any two inputs is the (same) weighted sum of the responses to each individ-
ual input.

A system is shift-invariant (also called translation-invariant for spatial signals, or time-invariant
for temporal signals) if the response to any input shifted by any amount ∆ is equal to the re-
sponse to the original input shifted by amount ∆.

These two properties are completely independent: a system can have one of them, both or
neither [think of an example of each of the 4 possibilities].

The rest of this review is focused on systems that are both linear and shift-invariant (known as
LSI systems). The diagram below decomposes the behavior of such an LSI system. Consider
an arbitrary discrete input signal. We can rewrite it as a weighted sum of impulses (also called
“delta functions”). Since the system is linear, the response to this weighted sum is just the
weighed sum of responses to each individual impulse. Since the system is shift-invariant, the
response to each impulse is just a shifted copy of the response to the first one. The response to
the impulse located at the origin (position 0) is known as the system’s impulse response.

Putting it all together, the full system response is the weighted sum of shifted copies of the
impulse response. Note that the system is fully characterized by the impulse response: This is
all we need to know in order to compute the response of the system to any input!

To make this explicit, we write an equation that describes this computation:

y[n] =
∑
m

x[m]r[n−m]

This operation, by which input x and impulse response r are combined to generate output
signal y is called a convolution. It is often written using a more compact notation: y = x ∗ r.
Although we think of x and r playing very different roles, the operation of convolution is
actually commutative: substituting k = n−m gives:

y[n] =
∑
k

x[n− k]r[k]

• Author: Eero Simoncelli, Center for Neural Science, and Courant Institute of Mathematical Sciences, New York
University.
• Thanks to Jonathan Pillow for generating some of the figures.
• Created: Fall 2001. Last revised: October 19, 2017.
• Send corrections or comments to eero.simoncelli@nyu.edu

v

Input

v1 x

v4 x

v3 x

v2 x
L

Output

v1 x

v4 x

v3 x

v2 x+

+

+

+

+

+

which is just r ∗ x. It is also easy to see that convolution is associative: a ∗ (b ∗ c) = (a ∗ b) ∗ c.

2

And finally, convolution is distributive over addition: a ∗ (b+ c) = a ∗ b+ a ∗ c.

Back to LSI systems. The impulse response
r is also known as a “convolution kernel” or
“linear filter”. Looking back at the definition,
each component of the output y is computed
as an inner product of a chunk of the input
vector x with a reverse-ordered copy of r. As
such, the convolution operation may be visu-
alized as a weighted sum over a window that
slides along the input signal.

In

Out

+
r1

r2
r3

For finite-length discrete signals (i.e., vectors),
one must specify how convolution is handled
at the boundaries (altenatively, one must de-
fine “shift-invariance” so as to explain what
happens to samples that are “shifted” to lo-
cations beyond the last element of the vec-
tor). One solution is to consider each vector
to cover one period of an infinitely periodic
signal. Thus, for example, when the convo-
lution operation would require one to access
an element just beyond the last element of the
vector, one need only “wrap around” and use
the first element. This is referred to as circu-
lar or periodic boundary handling. There are
other methods of handling boundaries. For
example, one can pad the signal with zeros
(implicitly assumed in Matlab), or reflect or ex-
trapolate it about the boundary elements.

Convolution
 Matrix

wraparound

The convolution operation may be naturally generalized to multidimensional signals. For
example, in 2D, both the signal and convolution kernal are two-dimensional arrays of numbers
(eg., digital images), and the operation corresponds to taking sums over a 2D window of the
signal, with weights specified by the kernel.

3

2 Sinusoids and Convolution

The sine function, sin(θ), gives the y-coordinate of the points on a unit circle, as a function of
the angle θ. The cosine function cos(θ), gives the x-coordinate. Thus, sin2(θ) + cos2(θ) = 1.
The angle, θ, is (by convention) assumed to be in units of radians - a full sweep around the
unit circle corresponds to an angle of 2π radians.

Now we consider sinusoidal signals. A discretized sinusoid can be written as: x[n] =
A cos(ωn − φ). Here, n is an integer position within the signal, the frequency (in radians per
sample) is determined by ω, and φ is the phase (in radians).

The usefulness of these sinusoidal functions comes from their unique behavior with respect
to LSI systems. Consider input signal x[n] = cos(ωn). The response of an LSI system with
impuse response r[n] is:

y[k] =
∑
k

r[k]x[n − k]

=
∑
k

r[k] cos(ω(n− k))

=
∑
k

r[k][cos(ωn) cos(ωk) + sin(ωn) sin(ωk)]

=

[∑
k

r[k] cos(ωk)

]
cos(ωn) +

[∑
k

r[k] sin(ωk)

]
sin(ωn)

where the third line is achieved using the trigonometric identity (cos(a − b) = cos(a) cos(b) +
sin(a) sin(b)). The two sums (in brackets) are just inner products of the impulse response withf
the cosine and sine functions at frequency ω, and we define them as cr(ω) =

∑
k r[k] cos(ωk)

and sr(ω) =
∑

k r[k] sin(ωk). If we consider these two values as coordinates of a two-dimensional
vector, we can rewrite them in polar coordinates by defining vector lengthAr(ω) =

√
cr(ω)2 + sr(ω)2

and vector angle φr(ω) = tan−1(sr(ω)/cr(ω)). Substituting back into our expression for the LSI
response gives:

y[k] = cr(ω) cos(ωn) + sr(ω) sin(ωn)

= Ar(ω) cos(φr(ω)) cos(ωn) +Ar(ω) sin(φr(ω)) sin(ωn)

= Ar(ω)[cos(ωn) cos(φr(ω)) + sin(ωn) sin(φr(ω))]

= Ar(ω) cos(ωn− φr(ω))

where the last line is achieved by using the same trig identity as before (but in the opposite
direction). Thus: The response of an LSI system to a sinusoidal input signal is a sinusoid of
the same frequency, but (possibly) different amplitude and phase. The amplitude is multi-
plied by Ar(ω), and the phase is shifted by φr(ω), both of which are derived from the system
impulse response r[n]. This is true of all LSI systems, and all sinusoidal signals.

Sinusoids as eigenfunctions of LSI systems. The relationship between LSI systems and si-
nusoidal functions may be expressed more compactly (and completely) by bundling together
a sine and cosine function into a single complex exponential:

eiθ ≡ cos(θ) + i sin(θ)

4

where i =
√−1 is the imaginary number. This rather mysterious relationship can be derived

by expanding the exponential in a Taylor series, and noting that the even (real) terms form the
series expansion of a cosine and the odd (imaginary) terms form the expansion of a sine [See
Feynman’s beautiful Lectures on Physics].

This notation may seem a bit cumbersome, but it allows changes in the amplitude and phase
of a sinusoid to be expressed more compactly, and the relationship between LSI systems and
sinusoids may be written as:

Lr{eiωn} = Ar(ω)e
i(ωn−φr(ω)

= Ar(ω)e
−iφr(ω)eiωn

where Lr represents an LSI system with impulse response r[n]. Summarizing, the action of an
LSI system on the complex exponential function is to simply multiply it by a single complex
number, Ar(ω)e

−iφr(ω). That is, the complex exponentials are eigenfunctions of LSI systems!

3 Fourier Transform(s)

A collection of sinusoids may be used as a linear basis for representing (realistic) signals. The
transformation from the standard representation of the signal (eg, as a function of time) to a set
of coefficients representing the amount of each sinusoid needed to create the signal is called
the Fourier Transform (F.T.).

There are really four variants of Fourier transform, depending on whether the signal is contin-
uous or discrete, and on whether its F.T. is continuous or discrete:

Signal Transform continuous discrete
continuous Fourier Transform Discrete-Time(Space) Fourier Transform

discrete Fourier Series Discrete Fourier Transform

In addition, when a signal/F.T. is discrete, the F.T./signal is periodic.

For our purposes here, we’ll focus on the Discrete Fourier Transform (DFT), which is both
periodic and discrete, in both the signal and transform domains. Consider the input domain
to be vectors of length N , which represent one period of a periodic discrete input signal. The
following collection of N sinusoidal functions forms an orthonormal basis [verify]:

ck[n] ≡ 1√
N

cos

(
2πk

N
n

)
, k = 0, 1, . . .

N

2

sk[n] ≡ 1√
N

sin

(
2πk

N
n

)
, k = 1, 2, . . .

N

2
− 1

A few comments about this set:

• these vectors come in sine/cosine pairs for each frequency except for the first and last
frequencies (k = 0, and k = N/2, for which the sine vector would be zero). If N is odd,
one simply leaves out the vector at frequency k = N/2.

5

• The vectors above have a squared norm of N , so dividing them by
√
N would make them

unit vectors. In this case, a matrix F formed with these N vectors as columns will be or-
thogonal, with an inverse equal to its transpose. But many definitions/implementations
of the DFT choose to normalize the vectors differently. For example, in matlab, the fft
function does not include any normalization factor, but the inverse (ifft) function then
normalizes by 1/N .

• Notice that if we included vectors for additional values of k, they would be redundant. In
particular, the vectors associated with any particular k are the same as those for k +mN
for any integer m. That is, the DFT, indexed by k, is periodic with period N . Moreover,
the vectors associated with −k are the same as those associated with k, except that the
sin function is negated.

Since this set of N sinusoidal vectors are orthogonal to each other, they span the full input
space, and we can write any vector �v as a weighted sum of them:

v[n] =

N/2∑
k=0

akck[n] +

N/2−1∑
k=1

bksk[n]

Since the basis is orthogonal, the Fourier coefficients {ak, bk} may be computed by projecting
the input vector �v onto each basis function:

ak =
N−1∑
n=0

v[n]ck[n]

bk =
N−1∑
n=0

v[n]sk[n]

In matrix form, we can write �v = F (F T�v).

Now, using the properties of sinusoids developed earlier, we can combine cosine and sine
terms into a single phase-shifted sinusoid:

v[n] =

N/2∑
k=0

Ak sin

(
2πk

N
n− φk

)

with amplitudes Ak =
√
a2k + b2k, and phases φk = tan−1(bk/ak). These are are referred to as

the Fourier amplitudes (or magnitudes) and Fourier phases of the signal v[n]. Again, this is

6

just a polar coordinate representation of the original values {ak, bk}.

At the right is an illustration of successive
approximations of a triangle wave with si-
nusoids. The top panel shows the original
signal. The next shows the approximation
one gets by projecting onto a single zero-
frequency sinusoid (i.e., the constant func-
tion). The next shows the result with three fre-
quency components, and the last panel shows
the result with six. [Try matlab’s xfourier
to see a live demo with square wave.]

O
rig

in
al

 s
ig

na
l

O
ne

 fr
eq

ue
nc

y
(k

=
0)

3
fr

eq
ue

nc
ie

s

0 5 10 15 20 25 30

6
fr

eq
ue

nc
ie

s

The standard representation of the Fourier coefficients uses a complex-valued number to rep-
resent the amplitude and phase of each frequency component, Ake

iφk . The Fourier amplitudes
and phases correspond to the amplitude and phase of this complex number.

Shown are Fourier amplitude spectra (the
amplitudes plotted as a function of fre-
quency number k) for three simple signals:
an impulse, a Gaussian, and a cosine func-
tion. These are shown here symmetrically ar-
ranged around frequency k = 0, but some
authors plot only the positive half of the fre-
quency axis. Note that the cosine function is
constructed by adding a complex exponential
to its frequency-negated cousin - this is why
the Fourier transform shows two impulses.

0

impulse
constant

0

0

0

0

0

7

Shift property. When we shift an input signal, each sinusoid in the Fourier representation
must be shifted. Specifically, shifting by m samples means that the phase of each sinusoid
changes by 2πk

N m. Note that the phase change is different for each frequency k, while the
amplitude is unchanged.

Stretch (dilation) property. If we stretch the input signal (i.e., rescale the x-axis by a factor
α), the Fourier transform will be compressed by the same factor (i.e., rescale the frequency
axis by 1/alpha). Consider a Gaussian signal. The Fourier amplitude is also a Gaussian, with
standard deviation inversely proportional to that of the original signal.

4 Convolution Theorem

The most important property of the Fourier representation is its relationship to LSI systems
and convolution. To see this, we need to combine the eigenvector property of complex expo-
nentials with the Fourier transform. The diagram below illustrates this. Consider applying an
LSI system to an arbitrary signal. Use the Fourier transform to rewrite it as a weighted sum
of sinusoids. The weights in the sum may be expressed as complex numbers, Ake

iφk , repre-
senting the amplitude and phase of each sinusoidal component. Since the system is linear, the
response to this weighted sum is just the weighted sum of responses to each of the individual
sinusoids. But the action of an LSI on a sinusoid with frequency number k will be to multiply
the amplitude by a factor Ar(k) and shift the phase by an amount φr(k). Finally, the system
response is a sum of sinusoids with amplitudes/phases corresponding to

(Ar(k)Ak)e
i(φr(k)+φk) = (Ar(k)e

iφr(k))(Ake
iφk).

Earlier, using a similar sort of diagram, we explained that LSI systems can be characterized
by their impulse response, r[n]. Now we have seen that the complex numbers Ar(k)e

iφr(k)

provide an alternative characterization. We now want to find the relationship between these
two characterizations. First, we write an expression for the convolution (response of the LSI
system):

y[n] =
∑
m

r[m]x[n−m]

Now take the DFT of both sides of the equation:

Y [k] =
∑
n

y[n]ei2πnk/N

=
∑
n

∑
m

r[m]x[n−m]ei2πnk/N

=
∑
m

r[m]
∑
n

x[n−m]ei2πnk/N

=
∑
m

r[m]ei2πmk/N

= X[k]R[k]

8

v
Input

v1 x

v3 x+

v2 x+
LSI

Output

 x

 x

 x

AL(1)eiφL(1) v1

+

+

AL(2)eiφL(2) v2

AL(3)eiφL(3) v3

This is quite amazing: the DFT of the LSI system response, y[n], is just the product of the DFT
of the input and the DFT of the impulse response! That is, the complex numbers Ar(k)e

iφr(k)

correspond to the Fourier transform of the function r[n].

Summarizing, the response of the LSI system
may be computed by a) Fourier-transforming
the input signal, b) multiplying each Fourier
coefficient by the associated Fourier coeffi-
cient of the impulse response, and c) In-
verse Fourier-transforming. A more collo-
quial statement of this Convolution theorem
is: “convolution in the signal domain corre-
sponds to multiplication in the Fourier do-
main”. Reversing the roles of the two do-
mains (since the inverse transformation is es-
sentially the same as the forward transforma-
tion) means that “multiplication in the sig-
nal domain corresponds to convolution in the
Fourier domain”.

v

v x r v x r

(F.T.)-1

Output

F.T.

Input
LSI

Why would we want to bother going through three sequential operations in order to compute
a convolution? Conceptually, multiplication is easier to understand than convolution, and
thus we can often gain a better understanding of an LSI by thinking about it in terms of its
effect in the Fourier domain. More practically, there are very efficient algorithms for the Dis-

9

crete Fourier Transform, known as the Fast Fourier Transform (DFT), such that this three-step
computation may be more computationally efficient than direct convolution.

As an example of conceptual simplification,
consider two impulse responses, along with
their Fourier amplitude spectra. It is often dif-
ficult to anticipate the behavior of these sys-
tems solely from their impulse responses. But
their Fourier transforms are quite revealing.
The first is a lowpass filter meaning that it dis-
cards high frequency sinusoidal components
(by multiplying them by zero). The second is
a bandpass filter - it allows a central band of
frequencies to pass, discarding the lower and
higher frequency components.

0

0

0

0

Lowpass
Filter

Fourier
Spectrum

Bandpass
Filter

Fourier
Spectrum

As another example of conceptual simplifica-
tion, consider an impulse response formed by
the product of a Gaussian function, and a si-
nusoid (known as a Gabor function). How
can we visualize the Fourier transform of this
product? We need only compute the convolu-
tion of the Fourier transforms of the Gaussian
and the sinusoid. The Fourier transform of
a Gaussian is a Gaussian. The Fourier trans-
form of a sinusoid is an impulse at the corre-
sponding frequency. Thus, the Fourier trans-
form of the Gabor function is a Gaussian cen-
tered at the frequency of the sinusoid.

0

0

x
0

10

