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Linear Algebra

“Linear algebra has become as basic and 
as applicable as calculus, and fortunately it 
is easier” 

- Gilbert Strang,  Linear Algebra and its Applications
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Vectors

Vector operations

• scalar multiplication

• addition, vector spaces

• length, unit vectors

• inner product (a.k.a. “dot” product)

- properties: commutative, distributive

- geometry: cosines, orthogonality test

[on board: geometry]
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Vectors as “operators”

• “averager”

• “windowed averager”

• “gaussian averager”

• “local differencer”

• “component selector”

[answers on board]

Inner product with a unit vector

• projection

• distance to line

• change of coordinates

[on board: geometry]
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Linear System

   is a linear system if (and 
only if) it obeys the 
principle of superposition:

For any input vectors           ,  
and any scalars          ,
the two diagrams at the right 
must produce the same 
response:
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Linear Systems

• Very well understood (150+ years of effort)

• Excellent design/characterization toolbox

• An idealization (they do not exist!)

“All models are wrong… but some are useful.” 
  – George E.P. Box

• Useful nevertheless:
- conceptualize fundamental issues

- provide baseline performance

- good starting point for more complex models
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Implications of Linearity
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“impulse” vectors
“standard basis”
“axis vectors”
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Implications of Linearity
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Response to any input can be predicted from responses to impulses
This defines the operation of matrix multiplication

“impulse” vectors
“standard basis”
“axis vectors”
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Matrix multiplication
• Two interpretations of matrix times vector:

- input perspective: weighted sum of columns
(from diagram on previous slide) 

- output perspective: inner product with rows

• transpose AT,  symmetric matrices (A = AT )

• distributive property (directly from linearity!)

• associative property - cascade of two linear 
systems defines the product of two matrices

• generally not commutative (AB ≠ BA),  
but note that (AB)T = BTAT

[details on board]
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M ~v

input perspective: 
weighted sum of columns

M ~v

output perspective: 
dot product with rows

Matrix multiplication: dimensional consistency

=
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Orthogonal matrices
• square shape (dimensionality-preserving)
• rows are orthogonal unit vectors
• columns are orthogonal unit vectors
• performs a rotation of the vector space 

(with possible axis inversion)
• preserve vector lengths and angles

(and thus, dot products)
• inverse is transpose

Diagonal matrices
• arbitrary rectangular shape
• all off-diagonal entries are zero
• squeeze/stretch along standard axes
• if non-square, creates/discards axes
• inverse is diagonal, with inverse of 

non-zero diagonal entries of original
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Singular Value Decomposition (SVD)

• M = U S VT,         “rotate,  stretch,  rotate”
- columns of V are basis for input coordinate system
- columns of U are basis for output coordinate system
- S rescales axes, and determines what gets through

• interpretation as sum of “outer products”

• non-uniqueness (permutations, sign flips)

• nullspace and rangespace

• inverse and pseudo-inverse

[details on board]
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M = U S VT

VT S U
(note order of transformations)

SVD geometry (in 2D)
Consider applying M to four vectors (colored points)
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M U S VT
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orthogonal basis for “range space”
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