Mathematical Tools
for Neural and Cognitive Science

Fall semester, 2017

Section 1: Linear Algebra

Linear Algebra

“Linear algebra has become as basic and
as applicable as calculus, and fortunately it
1s easier”

- Gilbert Strang, Linear Algebra and its Applications
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In two or three dimensions, we can draw these as arrows:
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[n higher dimensions. we typically must resort ro a “spike-plot™:
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Vector operations

® scalar multiplication

® addition, vector spaces

® length, unit vectors

® inner product (a.k.a. “dot” product)
— properties: commutative, distributive

- geometry: cosines, orthogonality test

[on board: geometry]




Vectors as “operators”

® “averager”

® “windowed averager”
® “‘gaussian averager’
® “local differencer”

® “component selector”

[answers on board]

Inner product with a unit vector
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® projection

® distance to line

® change of coordinates

[on board: geometry]




Linear System

S'is a linear system if (and

only if) it obeys the X e

principle of superposition: G Sl
S(aZ + bj) = aS(T) +bS(7) ¥ —(b)

For any input vectors {Z, i/}, R

and any scalars {a, b}, Xx—> S

the two diagrams at the right G
must produce the same N

response: y —» S

Linear Systems

® Very well understood (150+ years of effort)
® Excellent design/characterization toolbox

® An idealization (they do not exist!)

® Useful nevertheless:
- conceptualize fundamental issues

- provide baseline performance

- good starting point for more complex models




Implications of Linearity
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“standard basis”
“axis vectors”
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Implications of Linearity
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Output

“impulse responses”

Response to any input can be predicted from responses to impulses
This defines the operation of matrix multiplication

Matrix multiplication

® Two interpretations of matrix times vector:
- input perspective: weighted sum of columns
(from diagram on previous slide)
- output perspective: inner product with rows

® transpose A7, symmetric matrices (A = AT)
® distributive property (directly from linearity!)

® associative property - cascade of two linear
systems defines the product of two matrices

® oenerally not commutative (AB # BA),
but note that (AB)T = BTAT

[details on board]




output perspective:
dot product with rows

input perspective:
weighted sum of columns
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Matrix multiplication: dimensional consistency

< > +—> < >

I

13

14




All matrices

Orthogonal matrices

e square shape (dimensionality-preserving)
« rows are orthogonal unit vectors
e columns are orthogonal unit vectors
« performs a rotation of the vector space

(with possible axis inversion)
o preserve vector lengths and angles

(and thus, dot products)
e inverse is transpose X, \‘i"

Diagonal matrices
e arbitrary rectangular shape
o all off-diagonal entries are zero
o squeeze/stretch along standard axes
e if non-square, creates/discards axes
o inverse is diagonal, with inverse of
non-zero diagonal entries of original

Singular Value Decomposition (SVD)

o M=USVI, “rotate, stretch, rotate”
= columns of V are basis for input coordinate system
- columns of U are basis for output coordinate system

- S rescales axes, and determines what gets through
® interpretation as sum of “outer products”
® non-uniqueness (permutations, sign flips)
® nullspace and rangespace

® inverse and pseudo-inverse

[details on board]
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SVD geometry (in 2D)

Consider applying M to four vectors (colored points)

M=USVT
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/ orthogonal basis for input space

orthogonal basis for output space
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orthogonal basis for “range space”

orthogonal basis for “null space”
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orthogonal basis for “range space”

orthogonal basis for “null space”
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