Signal Detection Theory
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For equal, unimodal, symmetric distributions, ML decision
rule is a threshold. Bayes decision rule is shifted threshold.

Signal Detection Theory: experimental outcomes
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Signal Detection Theory: discriminability (d”)

High noise,
lots of overlap

Low noise,
not much overlap

Signal Detection Theory: Criterion
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Signal Detection Theory: “receiver operating characteristic” (ROC)
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[on board: Area under curve = %correct in a 2AFC task]

Discriminants in multiple dimensions

® Data-driven:
® Fisher Linear Discriminant (FLD) - maximize d’
® Support Vector Machine (SVM) - maximize margin

e Statistical:
e ML/MAP/Bayes under a probabilistic model

® c.g.: Gaussian, equal covariance (same as FLD)
® c.o.: Gaussian, unequal covariance (QDA)

® Regularization
® Examples:

e Visual gender identification
® Neural population decoding




Linear Classifier

Find unit vector 0 (“discriminant”) that best separates two distributions

histogram of projected values

Simplest choice: difference of means

Fisher Linear
Discriminant

Fisher

~ 2
. (0" (14 — pB)]
X ToTCaw + &7 Cp]

W= D_1VT(;¢A —pp), where VvD*VT =C4+Cpg




Support Vector Machine

Maximize “margin” (gap between data sets)

find largest m, and {t,b} s.t. ¢; (W7 % —b) >m, Vi

Gaussian ML classifier

Linear (for equal covariances), or quadratic (three different
geometries).
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[figure: Pagan et al. 2016]




Example: Gender identification

0200 face images (100 male, 100 female)
e Adjusted for position, size, intensity/contrast
o[ abeled by 27 human subjects

[Graf & Wichmann, NIPS*03]

Linear classifiers

SVM RVM Prot FLD

Four linear classifiers trained on subject data




Model validation/testing

® Cross-validation: Subject responses [%
correct, reaction time, confidence] are
explained

- very well by SVM

- moderately well by RVM / FLD
- not so well by Prot

® Curse of dimensionality strongly limits this
result. A more direct test: Synthesize
optimally discriminable faces...
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[Wichmann, Graf, Simoncelli, Biilthoff, Scholkopf, NIPS*04]
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[Wichmann, Graf, Simoncelli, Biilthoff, Scholkopf, NIPS*04]
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Population decoding

Independent

Poisson responses

[e.g., Seung & Sompolinsky, 1993]
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Clustering

* K-Means

* ML, assuming Gaussians
=> Soft-assignment K-means
(a form of Expectation-Maximization - EM)

K-means example
Here X; € R2, n =300, and K = 3

Initial centers. Heration 1 Heration 2

[from R. Tibshirani, 2013]




Mixture of Gaussians ML clustering
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Algorithm: alternate between maximizing these two sets of variables
(“coordinate descent”)

Different cluster analysis results on "mouse" data set:
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