
PSYCH-GA.2211/NEURL-GA.2201 – Fall 2016
Mathematical Tools for Cognitive and Neural Science

Homework 2

Due: 18 Oct 2016
(late homeworks penalized 10% per day)

See the course web site for submission details. Don’t wait until the day before the due date... start
now!

1. Trichromacy. Load the file colMatch.mat in your MATLAB environment. This file con-
tains a number of matrices and vectors related to the color matching experiment presented
in class. In particular, the variable P is an N × 3 matrix containing wavelength spectra for
three “primary” lights, that could be used in a color-matching experiment. For these prob-
lems N = 31, corresponding to samples of the visible wavelength spectrum from 400nm to
700nm in increments of 10nm.

The function humanColorMatcher(light,primaries) simulates a human observer in
a color matching experiment. The input variable light should contain the wavelength
spectrum of a test light (a 31-dimensional column vector). The variable primaries should
contain the wavelength spectra of a set of primary lights (typically, a 31×3 matrix, as for ma-
trix P described above). The function returns the 3-vector of the observer’s “knob settings” -
the intensities of each of the primaries that, when mixed together, appear identical to the test
light. The function can also be called with more than one test light (a matrix whose columns
contain 31-dimensional test lights), in which case it returns a matrix whose columns are the
knob settings corresponding to each test light.

(a) Create a test light with an arbitrary wavelength spectrum, by generating a random col-
umn vector with 31 positive components (use rand). Use humanColorMatcher to
“run an experiment”, asking the “human” to set the intensities of the three primaries in
P to match the appearance of the test light. Compute the 31-dimensional wavelength
spectrum of this combination of primaries, plot it together with the original light spec-
trum, and explain why the two spectra are so different, even though they appear the
same to the human.

(b) Now characterize your human observer as a linear system that maps 31-dimensional
lights to 3-dimensional knob settings. Specifially, run a set of experiments that allow
you to estimate the contents of a 3 × 31 color-matching matrix M that can predict the
human responses. Verify on a few random test lights that this matrix can correctly
predict the responses of the function humanColorMatcher.

(c) The variable Cones contains (in the rows) approximate spectral sensitivities of the
three color photoreceptors (cones) in the human eye: Cones(1,:) is for the L (long-
wavelength, or red) cones, Cones(2,:) the M (green) cones, and Cones(3,:) the
S (blue) cones. Applying the matrix Cones to any light �l yields a 3-vector containing
the average number of photons absorbed by that cone (try plot(Cones’) to visualize
them!). Verify that the cones provide a physiological explanation for the matching ex-
periment, in that the cone absorptions are equal for any pair of lights that are perceptu-
ally matched. First, verify this informally, by checking that randomly generated lights
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and their corresponding 3-primary matching lights produce equal cone absorptions.
Then, provide a few lines of matlab code that provide a more mathematical demonstra-
tion, along with an extended comment explaining your reasoning using concepts from
linear algebra. [Hint: First convince yourself, and explain why, it is equivalent to show
that M and Cones have the same nullspace. Then use SVD to demonstrate that this is
true!]

(d) The variable Phosphors contains the emission spectra of three standard color display
phosphors (from an old-fashioned cathode ray tube!). Suppose you wanted to make the
background color of this screen match the appearance of an arbitrary test light. Write
a matlab expression to compute the three phosphor intensities that would achieve this.
Verify that this particular mixture of phosphor spectra satisfies the “matching” criterion
(i.e., that a human would see this spectral mixture as being identical to the test light).

2. Polynomial regression. Load the file regress1.mat into your MATLAB environment.
Plot variable Y as a function of X. Find a least-squares fit of the data with polynomials
of order 0 (a constant), 1 (a line, parameterized by intercept and and slope), 2, 3, 4, and
5. You should compute this using svd and basic linear manipulations algebra that you’ve
learned in class. On a separate graph, plot the squared error as a function of the order of the
polynomial. Which fit do you think is “best”? Explain.

3. Trimmed regression. One of the limitations of least-squares regression is sensitivity to out-
liers. A common solution is to iteratively discard the bad points. Load the file regress3.mat.
First solve the standard regression problem, using a constant and a linear term. Then write
a loop that locates the data point with the largest magnitude error (use MATLAB’s max),
eliminates that row from the data vector and regressor matrix, and then re-solves the regres-
sion problem. On each iteration, plot a histogram (use hist) of the errors, and record (in the
entries of a vector) the mean squared error of the fit. To avoid filling your screen with dozens
of plot windows, you can reuse the same window (just call figure(1) before plotting). Af-
ter running, plot the vector of errors in a third figure. Based on this, and the histograms
you observed, which iteration gave the “best” fit? To visualize this solution, plot the corre-
sponding regression line, and all of the data points, labeling the discarded data points with
a different plot symbol. Did you make a good choice?

4. Principal components. Load the file PCA.mat into your MATLAB environment. You’ll find
a matrix M containing responses of a population of neurons under four different stimulus
conditions. Specifically, each row (a 4-vector) gives the estimated firing rate of one neuron
under four different stimulus conditions. We cannot visualize the data in this form, but
would like to know how the neurons as a population are encoding these four stimuli.

(a) Compute the principal components of the population responses (a set of four 4-vectors)
in two ways: using svd and using eig, verifying that these give the same answer. Now
compute the associated eigenvalues of the matrix MTM (or, alternatively, the squared
singular values of M ), and plot them. What do you think is the “true” dimensionality
of the data?

(b) Project the re-centered data in M onto the first principal component (i.e., the eigenvec-
tor corresponding to the maximal eigenvalue). Plot a histogram (using hist) of these
values. Show that the sum of squares of these values is equal to λ1. What proportion
of the total variability of the data (sum of squared lengths of all data vectors) does this
component account for?
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(c) Show a scatter plot of the data projected onto the first two principal components (that
is, plot the inner product of the data with the first component versus the inner product
with the second component). You can use plot (with circular plot symbols and no
connecting lines), or use scatter. Use axis(’equal’) to set the two axes to use
equal scales. Show that the sum of the squared lengths of these projected vectors is
equal to λ1 + λ2. What proportion of the total variability of the data do these two
components account for?

(d) Look at the axes of the subspace where the neural responses are varying most (i.e.,
the eigenvectors corresponding to the largest eigenvalues). How would you describe
these? Describe which stimuli this population of four neurons are able to distinguish,
and give an example of two stimuli that cannot be easily distinguished.


