
PSYCH-GA.2211/NEURL-GA.2201 – Fall 2016

Mathematical Tools for Cognitive and Neural Science

Homework 1

Due: 29 Sep 2016
(late homeworks penalized 10% per day)

See the course web site for submission details. Don’t wait until the day before the due date... start
now!

1. Geometry of linear transformations

(a) Write a function plotVec2 that takes as an argument a matrix of height 2, and plots
each column vector from this matrix on 2-dimensional axes. It should check that the
matrix argument has height two, signaling an error if not. Vectors should be plotted as
a line from the origin to the vector position, using circle or other symbol to denote the
“head” (see help for function ’plot’). It should also draw the x and y axes, extending
from -1 to 1. The two axes should be equal size, so that horizontal units are equal to
vertical units (read the help for the function ’axis’).

(b) Write a second function vecLenAngle that takes two vectors as arguments and returns
the length of each vector, as well as the angle between them.

(c) Generate a random 2x2 matrix, and decompose it using the SVD. Now examine the
action of this sequence of transformations (USV T ) on the two “standard basis” vectors,
{ê1, ê2}. Specifically, use vecLenAngle to examine the lengths and angle between two
basis vectors ên, the two vectors V T ên, the two vectors SV T ên, and the two vectors
USV T ên. Do these values change, and if so, after which transformation? Verify this is
consistent with their visual appearance by plotting each pair using plotVec2.

(d) Generate a matrix P with 65 columns containing 2-dimensional unit-vectors ûn =
[cos(θn); sin(θn)], and θn = 2πn/64, n = 0, 1, . . . , 64. [Note: Don’t use a for loop!
Create a vector containing the values of θn. ] Plot a single blue curve through these
points, and a red star (asterisk) at the location of the first point. As in the previous
problem, apply the SVD transformations one at a time to full set of points (again, don’t
use a for loop!), plot them, and describe what geometric changes you see (and why).

2. Testing for (non)linearity. Suppose, for each of the systems below, you observe the indicated
input/output pairs of vectors (or scalars). Determine whether each system could possibly
be a linear system. If so, provide an example of a matrix that is consistent with the observed
input/output pairs. If not, explain why.
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System 1: 1 −→ [4, 6]
2.5 −→ [10, 14]

System 2: [6, 3] −→ [12, 12]
[-2, -1] −→ [-6, -6]

System 3: [1, 2] −→ [5, -1]
[1, -1] −→ [1, 4]
[3, 0] −→ [7, 8]

System 4: [2, 4] −→ 0
[-2, 1] −→ 3

System 5: 0 −→ [1, 2]

3. A simple linear system. Suppose you have a retinal neuron whose response is a weighted
sum of the intensities of light that land on 6 photoreceptors (note that these intensities are
positive values). The weight vector is [1, 3, 5, 4, 2, 1]. (a) What unit-length stimulus vector
elicits the largest response in the neuron? Explain how you arrived at your answer. (b) Now
generate a unit-length stimulus vector that elicits a zero response in the neuron (and verify
that this is true). Is this a physically realizable stimulus? Is there any realizable stimulus
(not necessarily unit length) that would elicit a zero response in the neuron? If so, give an
example.

4. Gram-Schmidt. A classic method for constructing an orthonormal basis is known as Gram-
Schmidt orthogonalization. First, one generates an arbitrary unit vector (e.g., by normalizing a
vector created with randn). Each subsequent basis vector is created by generating another
arbitrary vector, subtracting off the projections of that vector along each of the previously
created basis vectors, and normalizing the remaining vector. You should draw (by hand) the
picture in 2D, assuming you have one unit vector, and you’re creating the second, to make
sure you understand the geometry of this construction!

Write a MATLAB function gramSchmidt that takes a single argument, N , specifying the
dimensionality of the basis. It should then generate an N×N matrix whose columns contain
a set of orthogonal normalized unit vectors. Try your function for N = 3, and plot the basis
vectors (you can use MATLAB’s rotate3d to interactively examine these). Check your
function numerically by calling it for an N larger than 3 and verifying that the resulting
matrix is orthonormal. Extra credit: make your function recursive – instead of using a for
loop, have the function call itself. To do this, you’ll probably need to write two functions
(a main function that initializes the problem, and a helper function that then calls itself to
generate each vector).

5. Null and Range spaces. Load the file mtxExamples.mat into your MATLAB world. You’ll
find a set of matrices named mtxN, with N = 1, 2.... For each matrix, use the SVD to: (a)
determine if there are non-trivial (i.e., not the zero vector!) vectors in the input space that
the matrix maps to zero (i.e., determine if there’s a nullspace), and if so, write a MATLAB
expression that generates a random example of such a vector, and verify that the matrix
maps it to the zero vector, and (b) generate a random vector y that lies in the range space of



hw1 3

the matrix, and then verify that it’s in the range space by solving for an input vector, x, such
that Mx = y.


