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Probability: an abstract mathematical 
framework for describing random quantities 
(e.g. measurements)

Statistics:  use of probability to summarize, 
analyze, interpret data.   Fundamental to all 
experimental science.



Statistics as a form of summary

0, 1, 0, 0, 0, 1, 0, 1, ...  

P(x)

The purpose of statistics is to replace a 
quantity of data by relatively few quantities 
which shall ... contain as much as possible, 
ideally the whole, of the relevant information 
contained in the original data. 

- R.A. Fisher, 1934

Statistics for Data Summary...

• Sample average (minimizes mean squared error)

• Sample median (minimizes mean absolute 
deviation)

• Least-squares regression - summarizes 
relationships between controlled and measured 
quantities

• TLS regression - summarizes relationships 
between measured quantities



- Efron & Tibshirani, Introduction to the Bootstrap

Scientific process

Summarize, and
compare with expectations

Create/modify
Hypothesis/model

Generate predictions,
Design experiment

Observe / Measure



Probability basics
• discrete probability distributions

• continuous probability densities

• cumulative distributions

• translation and scaling of distributions 
(adding or multiplying by a constant)

• monotonic nonlinear transformations

• drawing samples from a distribution via 
inverse cumulative mapping

• example densities/distributions
[on board]
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clicks of a Geiger counter, 
in a fixed time interval

horizontal velocity of gas 
molecules exiting a fan... and, time between clicks

Example distributions
roll of a fair die
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• Joint distributions

• Marginals (integrating)

• Conditionals (slicing)

• Bayes’ Rule (inverting)

• Statistical independence

Multi-dimensional random variables

notation:scalar/vector
3D, grayscale, contour 
plot

p(x, y)

Joint distribution



p(x) =

Z
p(x, y)dy

p(x, y)

Marginal distribution

p(z) =

Z

~x·û=z

p(~x)d~x

z

û

Generalized marginal distribution

Using vector notation:



p(x, y) p(x|y = 68)

Conditional distribution

p(x|y = 68) = p(x, y = 68)

�Z
p(x, y = 68)dx

= p(x, y = 68)
.
p(y = 68)

P
(x

|Y
=6

8)

Conditional distribution

slice joint distribution normalize (by marginal)p(x|y) = p(x, y)/p(y)

More generally:



Bayes’ Rule

p(x|y) = p(y|x) p(x)/p(y)

(a direct consequence of the definition of conditional probability)

P(x|Y=120)

P(x)

Conditional vs. marginal

In general, these differ.
When are they they same?  In particular, when are all 
conditionals equal to the marginal?



p(y|x) = p(y, x)/p(x) = p(y), 8x

Statistical independence

Variables x and y are statistically independent if 
(and only if):

p(x, y) = p(x)p(y)

Independence implies that all condionals are equal to the 
corresponding marginal:

Uncorrelated doesn’t mean independent... 
An Aside on Statistical Independence

Saying that voxel weights are independent means:
⇒  The weight of one component tells you nothing about the weight of another

Statistical independence a stronger assumption uncorrelatedness

⇒ All independent variables are uncorrelated
⇒ Not all uncorrelated variables are independent:

p(w1, w2) = p(w1)p(w2)

r = 

Elim double swoosh
Add Gaussian and 
disk



Expected value

E(x) =

Z
x p(x) dx

E(x2) =

Z
x

2
p(x) dx

E

�
(x� µ)2

�
=

Z
(x� µ)2 p(x) dx

=

Z
x

2
p(x) dx� µ

2

E (f(x)) =

Z
f(x) p(x) dx

[the mean,    ]µ

[the “second moment”]

�2[the variance,      ]

[note: an inner product, 
and thus linear!]

• One-D: mean and covariance summarize centroid/width

• translation and rescaling of random variables

• nonlinear transformations - “warping”

• Multi-D: vector mean and covariance matrix, elliptical geometry

• Mean/variance of weighted sum of random variables

• The sample average

• ... converges to true mean (except for bizarre distributions)

• ... with variance 

• ... most common common choice for an estimate  ...

• Correlation

Mean and (co)variance



The Central Limit Theorem

Distribution of a sum of independent R.V.’s - the return of 
convolution

[on board]
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Central limit for a uniform distribution...

10k samples, uniform density (sigma=1)
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Central limit for a binary distribution...

The Gaussian

• parameterized by mean and stdev (position / width)
• joint density of two indep Gaussian RVs is circular!   [easy]

• product of two Gaussians is Gaussian!   [easy] 

• conditionals of a Gaussian are Gaussian!   [easy]

• sum of Gaussian RVs is Gaussian!     [moderate]

• marginals of a Gaussian are Gaussian!    [moderate]

• central limit theorem: sum of many RVs is Gaussian!   [hard]

• most random (max entropy) density with this variance! [moderate]



mean:  [0.2, 0.8]
cov:  [1.0 -0.3;

 -0.3  0.4]

Gaussian densities

Product of Gaussians is Gaussian

Completing the square shows that this 
posterior is also Gaussian, with

(average, weighted by inverse variances!)



Product of Gaussians is Gaussian

Completing the square shows that this 
posterior is also Gaussian, with

(average, weighted by inverse variances!)
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Gaussian, with:

Conditional:

p(x1) =

Z
p(~xdx2

Marginal:

Gaussian, with:

(known as the “precision” matrix)
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Generalized marginals of a Gaussian

x1

x2

w

is Gaussian, with:

true mean: [0 0.8]
true cov: [1.0 -0.25

-0.25 0.3]

sample mean: [-0.05 0.83]
sample cov: [0.95 -0.23

-0.23 0.29]

700 samples

Measurement
(sampling)

Inference

true density



• Estimator: Any function of the data, intended to represent 
the best approximation of the true value of a parameter

• Most common estimator is the sample average

• Statistically-motivated examples:

- Maximum likelihood (ML):  

- Max a posteriori (MAP):

- Min Mean Squared Error
(MMSE):

Point Estimates

p(x|y)      proportional to	   p(x)            *     p(y|x)

• why must both prior and likelihood be taken into account?
• why doesn’t data dominate?
• when would it? when would prior dominate?
• what if prior and likelihood are incompatible?





Likelihood: 1 head Likelihood: 1 tail

More heads

M
ore tails

T=0

1

2

3

2 31H=0

Posteriors, p(H,T|x), assuming prior p(x)=1



example
infer whether a coin is fair by flipping it repeatedly
here, x is the probability of heads (50% is fair)
y1...n are the outcomes of flips

Consider three different priors:
 suspect fair suspect biased no idea

 prior fair prior biased prior uncertain

   X likelihood (heads)

   = posterior



   previous posteriors

   X likelihood (heads)

   = new posterior

   previous posteriors

   X likelihood (tails)

   = new posterior



Posteriors after observing 75 heads, 25 tails

àprior differences are ultimately overwhelmed by data

PDFs

CDFs

10H / 5T 20H / 10T2H / 1T

.975

.025
.19 .93 .49 .80

Confidence



Bias & Variance
• MSE = bias^2 + variance
• Bias is difficult to assess (since requires knowing the 

“true” value). But variance is easier.
• Classical statistics generally aims for an unbiased 

estimator, with minimal variance
• The MLE is asymptotically unbiased (under fairly 

general conditions), but this is only useful if
- the likelihood model is correct
- the optimum can be computed
- you have enough data 

• More general/modern view: estimation is about trading 
off bias and variance, through model selection, 
“regularization”,  or Bayesian priors.

statAnMod - 9/12/07 - E.P. Simoncelli

Optimization... 

Smooth (C2)

Convex

Quadratic

Closed-form,
and unique

Iterative descent,
(possibly) nonunique

Iterative descent, 
unique

Heuristics, 
exhaustive search, 
(pain & suffering)



  

Bootstrapping
• “The Baron had fallen to the bottom of a deep 

lake.  Just when it looked like all was lost, he 
thought to pick himself up by his own 
boostraps” [Adventures of Baron von Munchausen, by Rudolph Erich Raspe]

• A resampling method for computing estimator 
distribution (incl. stdev or error bars)

• Idea: instead of running experiment multiple 
times, resample from existing data (with 
replacement).  Compute estimates from these 
“bootstrap” data sets.

  [Efron & Tibshirani ’98]

[New York Times, 27 Jan 1987]

Histogram of bootstrap estimates

0.2 0.4 0.6 0.8 1
0

200

400

600

800

1000

1200

1400

 

 
Boostrapped
Original
95% conf

=> with 95% confidence, 



bias/variance?

Cross-validation
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fit error
x−val error
true degree
true error

(1) Randomly partition your data into a “training” set, and a “test” set.   
(2) Fit model to training set.  Measure error on test set.
(3) Repeat (many times)

A resampling method for determining predictive power of a model.  
Widely used to identify/avoid over-fitting.



argmin
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Ridge regression 
(a.k.a. Tikhonov regularization, or linear regularization)

Note: negative log posterior, assuming 
Gaussian likelihood & prior

Ordinary least squares regression:

“Regularized” least squares regression:

Choose lambda by cross-validation
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7th-order polynomial regression
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L1 regularization 
(a.k.a. LASSO - least absolute shrinkage and selection operator)

Next time: the lasso

The lasso combines some of the shrinking advantages of ridge with
variable selection

(From ESL page 71)

21

Using an absolute error regularization term promotes 
selection of regressors:

L1 norm


