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Fall semester, 2016

Section 4:
Statistics and Inference

Probability: an abstract mathematical
framework for describing random quantities
(e.g. measurements)

Statistics: use of probability to summarize,
analyze, interpret data. Fundamental to all
experimental science.




Statistics as a form of summary

0,1,0,0,0,1,0,1, ...

The purpose of statistics is to replace a
quantity of data by relatively few quantities
\~—— which shall ... contain as much as possible,
ideally the whole, of the relevant information
contained in the original data.

- R.A. Fisher, 1934

Statistics for Data Summary...

® Sample average (minimizes mean squared error)

® Sample median (minimizes mean absolute
deviation)

® [ east-squares regression - summarizes
relationships between controlled and measured
quantities

® TLS regression - summarizes relationships
between measured quantities




Statistics is the science of learning from experience, especially ex-
perience that arrives a little bit at a time. The earliest information
science was statistics, originating in about 1650. This century has
seen statistical techniques become the analytic methods of choice
in biomedical science, psychology, education, economics, communi-
cations theory, sociology, genetic studies, epidemiology, and other
areas. Recently, traditional sciences like geology, physics, and as-
tronomy have begun to make increasing use of statistical methods
as they focus on areas that demand informational efficiency, such as
the study of rare and exotic particles or extremely distant galaxies.

Most people are not natural-born statisticians. Left to our own
devices we are not very good at picking out patterns from a sea
of noisy data. To put it another way, we are all too good at pick-
ing out non-existent patterns that happen to suit our purposes.
Statistical theory attacks the problem from both ends. It provides
optimal methods for finding a real signal in a noisy background,
and also provides strict checks against the overinterpretation of
random patterns.

Statistical theory attempts to answer three basic questions:

(1) How should I collect my data?

(2) How should I analyze and summarize the data that I’ve col-
lected?

(3) How accurate are my data summaries?

Question 3 constitutes part of the process known as statistical in-
ference., . : o

- Efron & Tibshirani, Introduction to the Bootstrap

Scientific process

Observe / Measure

Summarize, and
compare with expectations

Generate predictions,
Design experiment

Create/modify
Hypothesis/model




Probability basics

discrete probability distributions

continuous probability densities

cumulative distributions

translation and scaling of distributions
(adding or multiplying by a constant)

monotonic nonlinear transformations

drawing samples from a distribution via

inverse cumulative mapping

example densities/distributions

[on board]

Example distributions
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Multi-dimensional random variables

* Joint distributions

e Marginals (integrating)
* Conditionals (slicing)

e Bayes’ Rule (inverting)

* Statistical independence

Joint distribution
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Marginal distribution

p(z,y)
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Generalized marginal distribution

Using vector notation:




Conditional distribution

p(z,y) p(zly = 68)
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p(xly = 68) = // (r,y = 68)d

More generally: ,/
p =

(a:|y) (iB Yy /p slice joint distribution normalize (by marginal)




Bayes’ Rule

LII. An Effay towards folving a Problem in
the Doétrine of Chances. By the late Rev.
Myr. Bayes, F. R.S. communicated by Mr.
Price, in a Letter to John Canton, A. M.

F.R. S.

Dear Sir,
Read Dec. 23, J Now fend you an effay which I have
1763 found among the papers of our de-
ceafed friend Mr. Bayes, and which, in my opinion,
has great merit, and well deferves to be preferved.

p(zly) = p(y|x) p(x)/p(y)

(a direct consequence of the definition of conditional probability)

Conditional vs. marginal
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In general, these differ.

When are they they same? In particular, when are all
conditionals equal to the marginal?




Statistical independence

Variables x and y are statistically independent if
(and only if):

p(z,y) = p(x)p(y)

Independence implies that all condionals are equal to the
corresponding marginal:

p(ylz) = p(y, z)/p(x) =p(y), Vx

Uncorrelated doesn’t mean independent...

Statistical independence a stronger assumption uncorrelatedness
=> All independent variables are uncorrelated

=>Not all uncorrelated variables are independent:

r=0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Expected value

x p(x) dzx [the mean, ]

2 p(z) dz [the “second moment”]

/
/
E ((m _ M)z) — /(:c —1)? p(x) dx [the variance, o]
/
/

f(x) p(z) dx [note: an inner product,
and thus linear!]

Mean and (co)variance

* One-D: mean and covariance summarize centroid/width

e translation and rescaling of random variables

* nonlinear transformations - “warping”
e Multi-D: vector mean and covariance matrix, elliptical geometry
* Mean/variance of weighted sum of random variables
* The sample average

e ... converges to true mean (except for bizarre distributions)

e ... with variance o*/N

e ... most common common choice for an estimate ...

¢ Correlation




Distribution of a sum of independent R.V.’s - the return of
convolution

The Central Limit Theorem

[on board]

Central limit for a uniform distribution...

10k samples, uniform density (sigma=1) (ur +u2)/ V2
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Central limit for a binary distribution...

one coin avg of 16 coins
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The Gaussian
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e parameterized by mean and stdev (position / width)

e joint density of two indep Gaussian RVs is circular! |[easy]
e product of two Gaussians is Gaussian! [easy]

e conditionals of a Gaussian are Gaussian! [easy]

* sum of Gaussian RVs is Gaussian!

* marginals of a Gaussian are Gaussian!

e central limit theorem: sum of many RVs is Gaussian! [hard]
* most random (max entropy) density with this variance!




Gaussian densities

p(f) = —— b =D O = i0)/2
(27T)N|C| mean: [0.2,0.8]
cov: [1.0-0.3;
-0.3 04]

Product of Gaussians 1s Gaussian
y=xz+mn, x~ N(g,0.), n~N(0,0,)

p(zly) = pylz)p(x)




Product of Gaussians 1s Gaussian
y=x+n, xNN(:u’:Bao-:L')?nNN(O)O-n)
p(zly) o plyle)p(r)
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Completing the square shows that this
posterior is also Gaussian, with
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(average, weighted by inverse variances!)

T~ N(i,C), let P=C"" (known as the “precision” matrix)
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Generalized marginals of a Gaussian

>

n
= 4T'CLa

700 samples

true density

Measurement
(sampling)

~~
“___—

Inference
true mean: [0 0.8] sample mean: [-0.05 0.83]
true cov: [1.0 -0.25 sample cov: [0.95 -0.23
-0.23 0.29]

-0.250.3]




Point Estimates

e [Estimator: Any function of the data, intended to represent
the best approximation of the true value of a parameter

® Most common estimator is the sample average

e Statistically-motivated examples:

— —

- Maximum likelihood (ML): z(d) = arg max p(d|x)
- Max a posteriori (MAP): #(d) = arg max p(z|d)
- Min Mean Squared Error ﬁ:(of) = argmin E ((x - :%)2|cf
(MMSE): ;
=E (x|ci>
p(xly)  proportionalto  p(x) ’ P(y[x)
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why must both prior and likelihood be taken into account?
» why doesn’t data dominate?

when would it? when would prior dominate?

what if prior and likelihood are incompatible?




ATEWAY

\
DoM ¥




Likelihood: 1 head Likelihood: 1 tail
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p(x)

example

infer whether a coin is fair by flipping it repeatedly
here, x is the probability of heads (50% is fair)
1. are the outcomes of flips

Consider three different priors:
suspect fair

suspect biased

no idea

1.5r

p(x)
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previous posteriors

p(x|H)
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Posteriors after observing 75 heads, 25 tails
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Bias & Variance
« MSE = bias”2 + variance

* Bias is difficult to assess (since requires knowing the
“true” value). But variance is easier.

* Classical statistics generally aims for an unbiased
estimator, with minimal variance

* The MLE is asymptotically unbiased (under fairly
general conditions), but this is only useful if

- the likelihood model is correct
- the optimum can be computed
- you have enough data

* More general/modern view: estimation 1s about trading
off bias and variance, through model selection,
“regularization”, or Bayesian priors.

Optimization...

Heuristics,
exhaustive search,
(pain & suffering)

Iterative descent,
(possibly) nonunique

Quadratic

Iterative descent,
unique

Closed-form,
and unique




Bootstrapping

» “The Baron had fallen to the bottom of a deep
lake. Just when it looked like all was lost, he
thought to pick himself up by his own

bOOStrapS” [Adventures of Baron von Munchausen, by Rudolph Erich Raspe]

* A resampling method for computing estimator
distribution (incl. stdev or error bars)

* Idea: instead of running experiment multiple
times, resample from existing data (with
replacement). Compute estimates from these
“bootstrap” data sets.

HEART ATTACK RISK | [New York Times, 27 Jan 1987]
FOUND T0 BE GUT
BY TAKING ASPIRIN Histogram of bootstrap estimates

1400 T T .
LIFESAVING EFFECTS SEEN Il Boostrapped
_ 1200+ — Original
Study Finds Benefit of Tablet 95% conf
Every Other. Day Is Much 1000r
Greater Than Expected 800(
600+
The summary statistics in the newspaper article are very simplt?: 400
heart attacks subjects
(fatal plus non-fatal) 200t
aspirin group: 104 11037
placebo group: 189 11034 8_2 0.4 0.6 0.8 1
=> with 95% confidence,
~  104/11037
6= = 55. (1.1)
189/11034

043 <6 <0.7

If this study can be believed, and its solid design makes it very
believable, the aspirin-takers only have 55% as many heart attacks
as placebo-takers.

Of course we are not really interested in 8, the estimated ratio.
What we would like to know is #, the true ratio.

[Efron & Tibshirani *98]
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Cross-validation

A resampling method for determining predictive power of a model.
Widely used to identify/avoid over-fitting.

(1) Randomly partition your data into a “training” set, and a “test” set.
(2) Fit model to training set. Measure error on test set.
(3) Repeat (many times)

10°

—fit error
——x-val error
4| —true degree| |
——true error
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Ridge regression
(a.k.a. Tikhonov regularization, or linear regularization)

arg mﬂ_l,n ’ ‘g o Xg‘ ‘2 Ridge ﬁ lmate

Ordinary least squares regression:

estimate ™~

“Regularized” least squares regression:

argmﬁiﬂHﬁ— XBII* + Al

7th-order polynomial regression

e data
—LSreg
—— Ridge reg

5

Note: negative log posterior, assuming 4
Gaussian likelihood & prior 3l
2

1

0

Choose lambda by cross-validation

L1 regularization
(a.k.a. LASSO - least absolute shrinkage and selection operator)

arg min |7 — X 5]|* +
8

L1 norm

Using an absolute error regularization term promotes
selection of regressors:

B, B,




