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Fall semester, 2016

Section 1: Linear Algebra

Linear Algebra

“Linear algebra has become as basic and
as applicable as calculus, and fortunately it
1s easier”

- Gilbert Strang, Linear Algebra and its Applications
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In two or three dimensions, we can draw these as arrows:
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[n higher dimensions. we typically must resort ro a “spike-plot™:
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Vector operations

® scalar multiplication

® addition, vector spaces

® length, unit vectors

® inner product (a.k.a. “dot” product)
~ properties: commutative, distributive

- geometry: cosines, orthogonality test

[on board: geometry]




Vectors as “operators”

® “averager”

® “windowed averager”
® ‘“‘caussian averager’
® “Jocal differencer”

® “component selector”

[answers on board]

Inner product with a unit vector
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® projection

® distance

® change of coordinates

[on board: geometry]




Linear System

S'is a linear system if (and

only if) it obeys the X @

principal of superposition: G Sl
S(aZ + b)) = aS(Z) +bS(7) Y —(a)

For any input vectors {Z, i/}, _

and any scalars {a, b}, X—' S 0

the two diagrams at the right G
must produce the same .

response: y— S

Linear Systems

® Very well understood (150+ years of effort)
® Excellent design/characterization toolbox

® An idealization (they do not exist!)

® Useful nevertheless:
- conceptualize fundamental issues

- provide baseline performance

- good starting point for more complex models




Implications of Linearity
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“impulse” vectors
“standard basis”
“axis vectors”




Implications of Linearity
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impulse” vectors “impulse responses”
“standard basis”

“axis vectors”

Response to any input can be predicted from responses to impulses
This defines the operation of matrix multiplication

Matrix multiplication

® input perspective: weighted sum of columns

(from diagram on previous slide)
® output perspective: inner product with rows
® distributive property (directly from linearity)

® associative property - cascade of two linear
systems defines the product of two matrices

® generally not commutative (AB # BA),
but note that (AB)? = BTAT




Matrix multiplication: dimensional consistency

Matrix types

Orthogonal matrices s
o square shape (dimensionality-preserving)
e rows are orthogonal unit vectors
e columns are orthogonal unit vectors
o performs a rotation of the vector space
(with possible axis inversion)
o preserve vector lengths and angles

(and thus, dot products) {\d
« inverse is transpose ‘56 ,6\7‘

>

® Diagonal matrices
e arbitrary rectangular shape
o all off-diagonal entries are zero
e squeeze/stretch along standard axes
e if non-square: creates/discards axes
e inverse is diagonal, with inverse of

non-zero diagonal entries of original




Singular Value Decomposition (SVD)

e M=US VT, “rotate, stretch, rotate”
® V is input coordinate system (U, output)

® interpretation as sum of outer products

® non-uniqueness (permutations, sign flips)
® nullspace and rangespace

® inverse and pseudo-inverse

[details on board]

SVD geometry
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“singular values”
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orthogonal basis for output space

M U S VT
E S1 —_—
5 wo
5 =)
: e
H_J
j orthogonal basis for “null space”

orthogonal basis for “range space”
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} orthogonal basis for “null space”

orthogonal basis for “range space”




