Mathematical Tools for Neural and Cognitive Science

Fall semester, 2016

Section 1: Linear Algebra

Linear Algebra

"Linear algebra has become as basic and as applicable as calculus, and fortunately it is easier"

- Gilbert Strang, Linear Algebra and its Applications

- scalar multiplication
- addition, vector spaces
- length, unit vectors
- inner product (a.k.a. "dot" product)
 - properties: commutative, distributive
 - geometry: cosines, orthogonality test

[on board: geometry]

Vectors as "operators"	
• "averager"	
• "windowed averager"	
• "gaussian averager"	
• "local differencer"	
• "component selector"	
[answers on board]	

Linear Systems

- Very well understood (150+ years of effort)
- Excellent design/characterization toolbox
- An idealization (they do not exist!)
- Useful nevertheless:
 - conceptualize fundamental issues
 - provide baseline performance
 - good starting point for more complex models

- input perspective: weighted sum of columns (from diagram on previous slide)
- output perspective: inner product with rows
- distributive property (directly from linearity)
- associative property cascade of two linear systems defines the product of two matrices
- generally *not* commutative $(AB \neq BA)$, but note that $(AB)^T = B^T A^T$

Singular Value Decomposition (SVD)

- $M = U S V^T$, "rotate, stretch, rotate"
- V is input coordinate system (U, output)
- interpretation as sum of outer products
- non-uniqueness (permutations, sign flips)
- nullspace and rangespace
- inverse and pseudo-inverse

[details on board]

