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Principal component analysis (PCA) is a mainstay of modern data analysis - a black box that
is widely used but poorly understood. The goal of this paper is to dispel the magic behind this
black box. This tutorial focuses on building a solid intuition for how and why principal component
analysis works; furthermore, it crystallizes this knowledge by deriving from simple intuitions, the
mathematics behind PCA . This tutorial does not shy away from explaining the ideas informally,
nor does it shy away from the mathematics. The hope is that by addressing both aspects, readers
of all levels will be able to gain a better understanding of PCA as well as the when, the how and
the why of applying this technique.

I. INTRODUCTION

Principal component analysis (PCA) has been called
one of the most valuable results from applied linear al-
gebra. PCA is used abundantly in all forms of analysis -
from neuroscience to computer graphics - because it is a
simple, non-parametric method of extracting relevant in-
formation from confusing data sets. With minimal addi-
tional effort PCA provides a roadmap for how to reduce
a complex data set to a lower dimension to reveal the
sometimes hidden, simplified structure that often under-
lie it.

The goal of this tutorial is to provide both an intuitive
feel for PCA, and a thorough discussion of this topic.
We will begin with a simple example and provide an intu-
itive explanation of the goal of PCA. We will continue by
adding mathematical rigor to place it within the frame-
work of linear algebra to provide an explicit solution. We
will see how and why PCA is intimately related to the
mathematical technique of singular value decomposition
(SVD). This understanding will lead us to a prescription
for how to apply PCA in the real world. We will discuss
both the assumptions behind this technique as well as
possible extensions to overcome these limitations.

The discussion and explanations in this paper are infor-
mal in the spirit of a tutorial. The goal of this paper is to
educate. Occasionally, rigorous mathematical proofs are
necessary although relegated to the Appendix. Although
not as vital to the tutorial, the proofs are presented for
the adventurous reader who desires a more complete un-
derstanding of the math. The only assumption is that the
reader has a working knowledge of linear algebra. Please
feel free to contact me with any suggestions, corrections
or comments.

∗Electronic address: shlens@salk.edu

II. MOTIVATION: A TOY EXAMPLE

Here is the perspective: we are an experimenter. We
are trying to understand some phenomenon by measur-
ing various quantities (e.g. spectra, voltages, velocities,
etc.) in our system. Unfortunately, we can not figure out
what is happening because the data appears clouded, un-
clear and even redundant. This is not a trivial problem,
but rather a fundamental obstacle in empirical science.
Examples abound from complex systems such as neu-
roscience, photometry, meteorology and oceanography -
the number of variables to measure can be unwieldy and
at times even deceptive, because the underlying relation-
ships can often be quite simple.

Take for example a simple toy problem from physics
diagrammed in Figure 1. Pretend we are studying the
motion of the physicist’s ideal spring. This system con-
sists of a ball of mass m attached to a massless, friction-
less spring. The ball is released a small distance away
from equilibrium (i.e. the spring is stretched). Because
the spring is “ideal,” it oscillates indefinitely along the
x-axis about its equilibrium at a set frequency.

This is a standard problem in physics in which the mo-
tion along the x direction is solved by an explicit function
of time. In other words, the underlying dynamics can be
expressed as a function of a single variable x.

However, being ignorant experimenters we do not know
any of this. We do not know which, let alone how
many, axes and dimensions are important to measure.
Thus, we decide to measure the ball’s position in a
three-dimensional space (since we live in a three dimen-
sional world). Specifically, we place three movie cameras
around our system of interest. At 200 Hz each movie
camera records an image indicating a two dimensional
position of the ball (a projection). Unfortunately, be-
cause of our ignorance, we do not even know what are
the real “x”, “y” and “z” axes, so we choose three cam-
era axes {!a, !b,!c} at some arbitrary angles with respect
to the system. The angles between our measurements



2

FIG. 1 A diagram of the toy example.

might not even be 90o! Now, we record with the cameras
for several minutes. The big question remains: how do
we get from this data set to a simple equation of x?

We know a-priori that if we were smart experimenters,
we would have just measured the position along the x-
axis with one camera. But this is not what happens in the
real world. We often do not know which measurements
best reflect the dynamics of our system in question. Fur-
thermore, we sometimes record more dimensions than we
actually need!

Also, we have to deal with that pesky, real-world prob-
lem of noise. In the toy example this means that we
need to deal with air, imperfect cameras or even friction
in a less-than-ideal spring. Noise contaminates our data
set only serving to obfuscate the dynamics further. This
toy example is the challenge experimenters face everyday.
We will refer to this example as we delve further into ab-
stract concepts. Hopefully, by the end of this paper we
will have a good understanding of how to systematically
extract x using principal component analysis.

III. FRAMEWORK: CHANGE OF BASIS

The goal of principal component analysis is to compute
the most meaningful basis to re-express a noisy data set.
The hope is that this new basis will filter out the noise
and reveal hidden structure. In the example of the spring,
the explicit goal of PCA is to determine: “the dynamics
are along the x-axis.” In other words, the goal of PCA
is to determine that x̂ - the unit basis vector along the
x-axis - is the important dimension. Determining this
fact allows an experimenter to discern which dynamics
are important, which are just redundant and which are
just noise.

A. A Naive Basis

With a more precise definition of our goal, we need
a more precise definition of our data as well. We treat

every time sample (or experimental trial) as an individual
sample in our data set. At each time sample we record
a set of data consisting of multiple measurements (e.g.
voltage, position, etc.). In our data set, at one point
in time, camera A records a corresponding ball position
(xA, yA). One sample or trial can then be expressed as a
6 dimensional column vector

!X =















xA

yA

xB

yB

xC

yC















where each camera contributes a 2-dimensional projec-
tion of the ball’s position to the entire vector !X. If we
record the ball’s position for 10 minutes at 120 Hz, then
we have recorded 10× 60× 120 = 72000 of these vectors.

With this concrete example, let us recast this problem
in abstract terms. Each sample !X is an m-dimensional
vector, where m is the number of measurement types.
Equivalently, every sample is a vector that lies in an m-
dimensional vector space spanned by some orthonormal
basis. From linear algebra we know that all measurement
vectors form a linear combination of this set of unit length
basis vectors. What is this orthonormal basis?

This question is usually a tacit assumption often over-
looked. Pretend we gathered our toy example data above,
but only looked at camera A. What is an orthonormal ba-
sis for (xA, yA)? A naive choice would be {(1, 0), (0, 1)},
but why select this basis over {(

√
2

2
,
√

2

2
), (−

√
2

2
, −

√
2

2
)} or

any other arbitrary rotation? The reason is that the
naive basis reflects the method we gathered the data. Pre-
tend we record the position (2, 2). We did not record

2
√

2 in the (
√

2

2
,
√

2

2
) direction and 0 in the perpindicu-

lar direction. Rather, we recorded the position (2, 2) on
our camera meaning 2 units up and 2 units to the left
in our camera window. Thus our naive basis reflects the
method we measured our data.

How do we express this naive basis in linear algebra?
In the two dimensional case, {(1, 0), (0, 1)} can be recast
as individual row vectors. A matrix constructed out of
these row vectors is the 2 × 2 identity matrix I. We can
generalize this to the m-dimensional case by constructing
an m × m identity matrix

B =











b1

b2

...
bm











=











1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1











= I

where each row is an orthornormal basis vector bi with
m components. We can consider our naive basis as the
effective starting point. All of our data has been recorded
in this basis and thus it can be trivially expressed as a
linear combination of {bi}.
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B. Change of Basis

With this rigor we may now state more precisely what
PCA asks: Is there another basis, which is a linear com-
bination of the original basis, that best re-expresses our
data set?

A close reader might have noticed the conspicuous ad-
dition of the word linear. Indeed, PCA makes one strin-
gent but powerful assumption: linearity. Linearity vastly
simplifies the problem by (1) restricting the set of poten-
tial bases, and (2) formalizing the implicit assumption of
continuity in a data set.1

With this assumption PCA is now limited to re-
expressing the data as a linear combination of its ba-
sis vectors. Let X be the original data set, where each
column is a single sample (or moment in time) of our data
set (i.e. !X). In the toy example X is an m × n matrix
where m = 6 and n = 72000. Let Y be another m × n
matrix related by a linear transformation P. X is the
original recorded data set and Y is a re-representation of
that data set.

PX = Y (1)

Also let us define the following quantities.2

• pi are the rows of P

• xi are the columns of X (or individual !X).

• yi are the columns of Y.

Equation 1 represents a change of basis and thus can have
many interpretations.

1. P is a matrix that transforms X into Y.

2. Geometrically, P is a rotation and a stretch which
again transforms X into Y.

3. The rows of P, {p1, . . . ,pm}, are a set of new basis
vectors for expressing the columns of X.

The latter interpretation is not obvious but can be seen
by writing out the explicit dot products of PX.

PX =







p1

...
pm







[

x1 · · · xn

]

Y =







p1 · x1 · · · p1 · xn

...
. . .

...
pm · x1 · · · pm · xn







1 A subtle point it is, but we have already assumed linearity by
implicitly stating that the data set even characterizes the dy-
namics of the system. In other words, we are already relying on
the superposition principal of linearity to believe that the data
provides an ability to interpolate between individual data points

2 In this section xi and yi are column vectors, but be forewarned.
In all other sections xi and yi are row vectors.

We can note the form of each column of Y.

yi =







p1 · xi

...
pm · xi







We recognize that each coefficient of yi is a dot-product
of xi with the corresponding row in P. In other words,
the jth coefficient of yi is a projection on to the jth row of
P. This is in fact the very form of an equation where yi is
a projection on to the basis of {p1, . . . ,pm}. Therefore,
the rows of P are indeed a new set of basis vectors for
representing of columns of X.

C. Questions Remaining

By assuming linearity the problem reduces to find-
ing the appropriate change of basis. The row vectors
{p1, . . . ,pm} in this transformation will become the
principal components of X. Several questions now arise.

• What is the best way to “re-express” X?

• What is a good choice of basis P?

These questions must be answered by next asking our-
selves what features we would like Y to exhibit. Evi-
dently, additional assumptions beyond linearity are re-
quired to arrive at a reasonable result. The selection of
these assumptions is the subject of the next section.

IV. VARIANCE AND THE GOAL

Now comes the most important question: what does
“best express” the data mean? This section will build up
an intuitive answer to this question and along the way
tack on additional assumptions. The end of this section
will conclude with a mathematical goal for deciphering
“garbled” data.

In a linear system “garbled” can refer to only three
potential confounds: noise, rotation and redundancy. Let
us deal with each situation individually.

A. Noise and Rotation

Measurement noise in any data set must be low or else,
no matter the analysis technique, no information about a
system can be extracted. There exists no absolute scale
for noise but rather all noise is measured relative to the
measurement. A common measure is the signal-to-noise
ratio (SNR), or a ratio of variances σ2,

SNR =
σ2

signal

σ2
noise

. (2)

A high SNR (# 1) indicates high precision data, while a
low SNR indicates noise contaminated data.
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FIG. 2 (a) Simulated data of (xA, yA) for camera A. The
signal and noise variances σ2

signal and σ2
noise are graphically

represented by the two lines subtending the cloud of data. (b)
Rotating these axes finds an optimal p∗ where the variance
and SNR are maximized. The SNR is defined as the ratio of
the variance along p∗ and the variance in the perpindicular
direction.

Pretend we plotted all data from camera A from the
spring in Figure 2a. Remembering that the spring travels
in a straight line, every individual camera should record
motion in a straight line as well. Therefore, any spread
deviating from straight-line motion must be noise. The
variance due to the signal and noise are indicated by each
line in the diagram. The ratio of the two lengths, the
SNR, thus measures how “fat” the cloud is - a range of
possiblities include a thin line (SNR # 1), a perfect circle
(SNR = 1) or even worse. By positing reasonably good
measurements, quantitatively we assume that directions
with largest variances in our measurement vector space
contain the dynamics of interest. In Figure 2 the di-
rection with the largest variance is not x̂A = (1, 0) nor
ŷA = (0, 1), but the direction along the long axis of the
cloud. Thus, by assumption the dynamics of interest ex-
ist along directions with largest variance and presumably
highest SNR .

Our assumption suggests that the basis for which we
are searching is not the naive basis (x̂A, ŷA) because these
directions do not correspond to the directions of largest
variance. Maximizing the variance (and by assumption
the SNR ) corresponds to finding the appropriate rota-
tion of the naive basis. This intuition corresponds to
finding the direction p∗ in Figure 2b. How do we find
p∗? In the 2-dimensional case of Figure 2a, p∗ falls along
the direction of the best-fit line for the data cloud. Thus,
rotating the naive basis to lie parallel to p∗ would reveal
the direction of motion of the spring for the 2-D case.
How do we generalize this notion to an arbitrary number
of dimensions? Before we approach this question we need
to examine this issue from a second perspective.

B. Redundancy

Figure 2 hints at an additional confounding factor in
our data - redundancy. This issue is particularly evident
in the example of the spring. In this case multiple sensors

FIG. 3 A spectrum of possible redundancies in data from the
two separate recordings r1 and r2 (e.g. xA, yB). The best-fit
line r2 = kr1 is indicated by the dashed line.

record the same dynamic information. Reconsider Fig-
ure 2 and ask whether it was really necessary to record
2 variables? Figure 3 might reflect a range of possibile
plots between two arbitrary measurement types r1 and
r2. Panel (a) depicts two recordings with no apparent
relationship. In other words, r1 is entirely uncorrelated
with r2. Because one can not predict r1 from r2, one
says that r1 and r2 are statistcally independent. This
situation could occur by plotting two variables such as
(xA, humidity).

On the other extreme, Figure 3c depicts highly corre-
lated recordings. This extremity might be achieved by
several means:

• A plot of (xA, xB) if cameras A and B are very
nearby.

• A plot of (xA, x̃A) where xA is in meters and x̃A is
in inches.

Clearly in panel (c) it would be more meaningful to just
have recorded a single variable, not both. Why? Because
one can calculate r1 from r2 (or vice versa) using the best-
fit line. Recording solely one response would express the
data more concisely and reduce the number of sensor
recordings (2 → 1 variables). Indeed, this is the very
idea behind dimensional reduction.

C. Covariance Matrix

In a 2 variable case it is simple to identify redundant
cases by finding the slope of the best-fit line and judging
the quality of the fit. How do we quantify and generalize
these notions to arbitrariliy higher dimensions? Consider
two sets of measurements with zero means 3

A = {a1, a2, . . . , an} , B = {b1, b2, . . . , bn}

3 These data sets are in mean deviation form because the means
have been subtracted off or are zero.
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where the subscript denotes the sample number. The
variance of A and B are individually defined as,

σ2
A = 〈aiai〉i , σ2

B = 〈bibi〉i

where the expectation4 is the average over n variables.
The covariance between A and B is a straight-forward
generalization.

covariance of A and B ≡ σ2
AB = 〈aibi〉i

The covariance measures the degree of the linear rela-
tionship between two variables. A large (small) value in-
dicates high (low) redundancy. In the case of Figures 2a
and 3c, the covariances are quite large. Some additional
facts about the covariance.

• σ2
AB ≥ 0 (non-negative). σAB is zero if and only if

A and B are entirely uncorrelated.

• σ2
AB = σ2

A if A = B.

We can equivalently convert A and B into corresponding
row vectors.

a = [a1 a2 . . . an]

b = [b1 b2 . . . bn]

so that we may now express the covariance as a dot prod-
uct matrix computation.

σ2
ab ≡

1

n − 1
abT (3)

where 1

n−1
is a constant for normalization.5

Finally, we can generalize from two vectors to an arbi-
trary number. We can rename the row vectors x1 ≡ a,
x2 ≡ b and consider additional indexed row vectors
x3, . . . ,xm. Now we can define a new m × n matrix
X.

X =







x1

...
xm






(4)

One interpretation of X is the following. Each row of X
corresponds to all measurements of a particular type (xi).
Each column of X corresponds to a set of measurements
from one particular trial (this is !X from section 3.1). We
now arrive at a definition for the covariance matrix CX.

CX ≡
1

n − 1
XXT . (5)

4 〈·〉i denotes the average over values indexed by i.
5 The most straight-forward normalization is 1

n
. However, this

provides a biased estimation of variance particularly for small
n. It is beyond the scope of this paper to show that the proper
normalization for an unbiased estimator is 1

n−1
.

Consider how the matrix form XXT , in that order, com-
putes the desired value for the ijth element of CX.
Specifically, the ijth element of CX is the dot product
between the vector of the ith measurement type with the
vector of the jth measurement type (or substituting xi

and xj for a and b into Equation 3). We can summarize
several properties of CX:

• CX is a square symmetric m × m matrix.

• The diagonal terms of CX are the variance of par-
ticular measurement types.

• The off-diagonal terms of CX are the covariance
between measurement types.

CX captures the correlations between all possible pairs
of measurements. The correlation values reflect the noise
and redundancy in our measurements.

• In the diagonal terms, by assumption, large (small)
values correspond to interesting dynamics (or
noise).

• In the off-diagonal terms large (small) values cor-
respond to high (low) redundancy.

Pretend we have the option of manipulating CX. We
will suggestively define our manipulated covariance ma-
trix CY. What features do we want to optimize in CY?

D. Diagonalize the Covariance Matrix

We can summarize the last two sections by stating
that our goals are (1) to minimize redundancy, mea-
sured by covariance, and (2) maximize the signal, mea-
sured by variance. By definition covariances must be
non-negative, thus the minimal covariance is zero. What
would the optimized covariance matrix CY look like? Ev-
idently, in an “optimized” matrix all off-diagonal terms
in CY are zero. Thus, CY must be diagonal.

There are many methods for diagonalizing CY. It is
curious to note that PCA arguably selects the easiest
method, perhaps accounting for its widespread applica-
tion.

PCA assumes that all basis vectors {p1, . . . ,pm} are
orthonormal (i.e. pi ·pj = δij). In the language of linear
algebra, PCA assumes P is an orthonormal matrix. Sec-
ondly PCA assumes the directions with the largest vari-
ances the signals and the most “important.” In other
words, they are the most principal. Why are these as-
sumptions easiest?

Envision how PCA works. In our simple example in
Figure 2b, P acts as a generalized rotation to align a basis
with the maximally variant axis. In multiple dimensions
this could be performed by a simple algorithm:

1. Select a normalized direction in m-dimensional
space along which the variance in X is maximized.
Save this vector as p1.
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2. Find another direction along which variance is max-
imized, however, because of the orthonormality
condition, restrict the search to all directions per-
pindicular to all previous selected directions. Save
this vector as pi

3. Repeat this procedure until m vectors are selected.

The resulting ordered set of p’s are the principal compo-
nents.

In principle this simple algorithm works, however that
would bely the true reason why the orthonormality as-
sumption is particularly judicious. Namely, the true
benefit to this assumption is that it makes the solution
amenable to linear algebra. There exist decompositions
that can provide efficient, explicit algebraic solutions.

Notice what we also gained with the second assump-
tion. We have a method for judging the “importance” of
the each prinicipal direction. Namely, the variances as-
sociated with each direction pi quantify how “principal”
each direction is. We could thus rank-order each basis
vector pi according to the corresponding variances.We
will now pause to review the implications of all the as-
sumptions made to arrive at this mathematical goal.

E. Summary of Assumptions and Limits

This section provides an important context for under-
standing when PCA might perform poorly as well as
a road map for understanding new extensions to PCA.
The Discussion returns to this issue and provides a more
lengthy discussion.

I. Linearity
Linearity frames the problem as a change of
basis. Several areas of research have explored
how applying a nonlinearity prior to perform-
ing PCA could extend this algorithm - this
has been termed kernel PCA.

II. Mean and variance are sufficient statistics.
The formalism of sufficient statistics captures
the notion that the mean and the variance en-
tirely describe a probability distribution. The
only class of probability distributions that are
fully described by the first two moments are
exponential distributions (e.g. Gaussian, Ex-
ponential, etc).

In order for this assumption to hold, the prob-
ability distribution of xi must be exponen-
tially distributed. Deviations from this could
invalidate this assumption.6 On the flip side,

6 A sidebar question: What if xi are not Gaussian distributed?
Diagonalizing a covariance matrix might not produce satisfac-
tory results. The most rigorous form of removing redundancy is

this assumption formally guarantees that the
SNR and the covariance matrix fully charac-
terize the noise and redundancies.

III. Large variances have important dynamics.
This assumption also encompasses the belief
that the data has a high SNR. Hence, prin-
cipal components with larger associated vari-
ances represent interesting dynamics, while
those with lower variances represent noise.

IV. The principal components are orthogonal.
This assumption provides an intuitive sim-
plification that makes PCA soluble with lin-
ear algebra decomposition techniques. These
techniques are highlighted in the two follow-
ing sections.

We have discussed all aspects of deriving PCA - what
remain are the linear algebra solutions. The first solution
is somewhat straightforward while the second solution
involves understanding an important algebraic decompo-
sition.

V. SOLVING PCA: EIGENVECTORS OF COVARIANCE

We derive our first algebraic solution to PCA using
linear algebra. This solution is based on an important
property of eigenvector decomposition. Once again, the
data set is X, an m × n matrix, where m is the number
of measurement types and n is the number of samples.
The goal is summarized as follows.

Find some orthonormal matrix P where
Y = PX such that CY ≡ 1

n−1
YYT is diago-

nalized. The rows of P are the principal com-
ponents of X.

statistical independence.

P (y1,y2) = P (y1)P (y2)

where P (·) denotes the probability density. The class of algo-
rithms that attempt to find the y1, , . . . , ym that satisfy this
statistical constraint are termed independent component analy-
sis (ICA). In practice though, quite a lot of real world data are
Gaussian distributed - thanks to the Central Limit Theorem -
and PCA is usually a robust solution to slight deviations from
this assumption.
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We begin by rewriting CY in terms of our variable of
choice P.

CY =
1

n − 1
YYT

=
1

n − 1
(PX)(PX)T

=
1

n − 1
PXXT PT

=
1

n − 1
P(XXT )PT

CY =
1

n − 1
PAPT

Note that we defined a new matrix A ≡ XXT , where A
is symmetric (by Theorem 2 of Appendix A).

Our roadmap is to recognize that a symmetric matrix
(A) is diagonalized by an orthogonal matrix of its eigen-
vectors (by Theorems 3 and 4 from Appendix A). For a
symmetric matrix A Theorem 4 provides:

A = EDET (6)

where D is a diagonal matrix and E is a matrix of eigen-
vectors of A arranged as columns.

The matrix A has r ≤ m orthonormal eigenvectors
where r is the rank of the matrix. The rank of A is less
than m when A is degenerate or all data occupy a sub-
space of dimension r ≤ m. Maintaining the constraint of
orthogonality, we can remedy this situation by selecting
(m − r) additional orthonormal vectors to “fill up” the
matrix E. These additional vectors do not effect the fi-
nal solution because the variances associated with these
directions are zero.

Now comes the trick. We select the matrix P to be a
matrix where each row pi is an eigenvector of XXT . By
this selection, P ≡ ET. Substituting into Equation 6, we
find A = PT DP. With this relation and Theorem 1 of
Appendix A (P−1 = PT ) we can finish evaluating CY.

CY =
1

n − 1
PAPT

=
1

n − 1
P(PT DP)PT

=
1

n − 1
(PPT )D(PPT )

=
1

n − 1
(PP−1)D(PP−1)

CY =
1

n − 1
D

It is evident that the choice of P diagonalizes CY. This
was the goal for PCA. We can summarize the results of
PCA in the matrices P and CY.

• The principal components of X are the eigenvectors
of XXT ; or the rows of P.

• The ith diagonal value of CY is the variance of X
along pi.

In practice computing PCA of a data set X entails (1)
subtracting off the mean of each measurement type and
(2) computing the eigenvectors of XXT . This solution is
encapsulated in demonstration Matlab code included in
Appendix B.

VI. A MORE GENERAL SOLUTION: SVD

This section is the most mathematically involved and
can be skipped without much loss of continuity. It is pre-
sented solely for completeness. We derive another alge-
braic solution for PCA and in the process, find that PCA
is closely related to singular value decomposition (SVD).
In fact, the two are so intimately related that the names
are often used interchangeably. What we will see though
is that SVD is a more general method of understanding
change of basis.

We begin by quickly deriving the decomposition. In
the following section we interpret the decomposition and
in the last section we relate these results to PCA.

A. Singular Value Decomposition

Let X be an arbitrary n × m matrix7 and XT X be a
rank r, square, symmetric n × n matrix. In a seemingly
unmotivated fashion, let us define all of the quantities of
interest.

• {v̂1, v̂2, . . . , v̂r} is the set of orthonormal
m × 1 eigenvectors with associated eigenval-
ues {λ1, λ2, . . . , λr} for the symmetric matrix
XT X.

(XT X)v̂i = λiv̂i

• σi ≡
√

λi are positive real and termed the singular
values.

• {û1, û2, . . . , ûr} is the set of orthonormal n×1 vec-
tors defined by ûi ≡ 1

σi
Xv̂i.

We obtain the final definition by referring to Theorem 5
of Appendix A. The final definition includes two new and
unexpected properties.

• ûi · ûj = δij

• ‖Xv̂i‖ = σi

These properties are both proven in Theorem 5. We now
have all of the pieces to construct the decomposition. The

7 Notice that in this section only we are reversing convention from
m×n to n×m. The reason for this derivation will become clear
in section 6.3.
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“value” version of singular value decomposition is just a
restatement of the third definition.

Xv̂i = σiûi (7)

This result says a quite a bit. X multiplied by an eigen-
vector of XT X is equal to a scalar times another vec-
tor. The set of eigenvectors {v̂1, v̂2, . . . , v̂r} and the set
of vectors {û1, û2, . . . , ûr} are both orthonormal sets or
bases in r-dimensional space.

We can summarize this result for all vectors in one
matrix multiplication by following the prescribed con-
struction in Figure 4. We start by constructing a new
diagonal matrix Σ.

Σ ≡





















σ
1̃

. . . 0
σr̃

0

0 . . .
0





















where σ
1̃
≥ σ

2̃
≥ . . . ≥ σr̃ are the rank-ordered set of sin-

gular values. Likewise we construct accompanying or-
thogonal matrices V and U.

V = [v̂1̃ v̂2̃ . . . v̂m̃]

U = [û1̃ û2̃ . . . ûñ]

where we have appended an additional (m−r) and (n−r)
orthonormal vectors to “fill up” the matrices for V and
U respectively8. Figure 4 provides a graphical represen-
tation of how all of the pieces fit together to form the
matrix version of SVD.

XV = UΣ (8)

where each column of V and U perform the “value” ver-
sion of the decomposition (Equation 7). Because V is
orthogonal, we can multiply both sides by V−1 = VT to
arrive at the final form of the decomposition.

X = UΣVT (9)

Although it was derived without motivation, this decom-
position is quite powerful. Equation 9 states that any
arbitrary matrix X can be converted to an orthogonal
matrix, a diagonal matrix and another orthogonal matrix
(or a rotation, a stretch and a second rotation). Making
sense of Equation 9 is the subject of the next section.

8 This is the same procedure used to fix the degeneracy in the
previous section.

B. Interpreting SVD

The final form of SVD (Equation 9) is a concise but
thick statement to understand. Let us instead reinterpret
Equation 7.

Xa = kb

where a and b are column vectors and k is a scalar con-
stant. The set {v̂1, v̂2, . . . , v̂m} is analogous to a and the
set {û1, û2, . . . , ûn} is analogous to b. What is unique
though is that {v̂1, v̂2, . . . , v̂m} and {û1, û2, . . . , ûn} are
orthonormal sets of vectors which span an m or n dimen-
sional space, respectively. In particular, loosely speak-
ing these sets appear to span all possible “inputs” (a)
and “outputs” (b). Can we formalize the view that
{v̂1, v̂2, . . . , v̂n} and {û1, û2, . . . , ûn} span all possible
“inputs” and “outputs”?

We can manipulate Equation 9 to make this fuzzy hy-
pothesis more precise.

X = UΣVT

UT X = ΣVT

UT X = Z

where we have defined Z ≡ ΣVT . Note that the previous
columns {û1, û2, . . . , ûn} are now rows in UT . Compar-
ing this equation to Equation 1, {û1, û2, . . . , ûn} per-
form the same role as {p̂1, p̂2, . . . , p̂m}. Hence, UT is
a change of basis from X to Z. Just as before, we were
transforming column vectors, we can again infer that we
are transforming column vectors. The fact that the or-
thonormal basis UT (or P) transforms column vectors
means that UT is a basis that spans the columns of X.
Bases that span the columns are termed the column space
of X. The column space formalizes the notion of what
are the possible “outputs” of any matrix.

There is a funny symmetry to SVD such that we can
define a similar quantity - the row space.

XV = ΣU

(XV)T = (ΣU)T

VT XT = UT Σ

VT XT = Z

where we have defined Z ≡ UTΣ. Again the rows of
VT (or the columns of V) are an orthonormal basis for
transforming XT into Z. Because of the transpose on X,
it follows that V is an orthonormal basis spanning the
row space of X. The row space likewise formalizes the
notion of what are possible “inputs” into an arbitrary
matrix.

We are only scratching the surface for understanding
the full implications of SVD. For the purposes of this tu-
torial though, we have enough information to understand
how PCA will fall within this framework.
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The “value” form of SVD is expressed in equation 7.

Xv̂i = σiûi

The mathematical intuition behind the construction of the matrix form is that we want to express all n “value” equations
in just one equation. It is easiest to understand this process graphically. Drawing the matrices of equation 7 looks likes
the following.

We can construct three new matrices V, U and Σ. All singular values are first rank-ordered σ1̃ ≥ σ2̃ ≥ . . . ≥ σr̃, and
the corresponding vectors are indexed in the same rank order. Each pair of associated vectors v̂i and ûi is stacked in
the ith column along their respective matrices. The corresponding singular value σi is placed along the diagonal (the
iith position) of Σ. This generates the equation XV = UΣ, which looks like the following.

The matrices V and U are m × m and n × n matrices respectively and Σ is a diagonal matrix with a few non-zero
values (represented by the checkerboard) along its diagonal. Solving this single matrix equation solves all n “value”
form equations.

FIG. 4 How to construct the matrix form of SVD from the “value” form.

C. SVD and PCA

With similar computations it is evident that the two
methods are intimately related. Let us return to the
original m × n data matrix X. We can define a new
matrix Y as an n × m matrix9.

Y ≡
1√

n − 1
XT

where each column of Y has zero mean. The definition
of Y becomes clear by analyzing YT Y.

YT Y =

(

1√
n − 1

XT

)T (

1√
n − 1

XT

)

=
1

n − 1
XTT XT

=
1

n − 1
XXT

YT Y = CX

9 Y is of the appropriate n×m dimensions laid out in the deriva-
tion of section 6.1. This is the reason for the “flipping” of di-
mensions in 6.1 and Figure 4.

By construction YT Y equals the covariance matrix of
X. From section 5 we know that the principal compo-
nents of X are the eigenvectors of CX. If we calculate the
SVD of Y, the columns of matrix V contain the eigen-
vectors of YT Y = CX. Therefore, the columns of V are
the principal components of X. This second algorithm is
encapsulated in Matlab code included in Appendix B.

What does this mean? V spans the row space of Y ≡
1√
n−1

XT . Therefore, V must also span the column space

of 1√
n−1

X. We can conclude that finding the principal

components10 amounts to finding an orthonormal basis
that spans the column space of X.

10 If the final goal is to find an orthonormal basis for the coulmn
space of X then we can calculate it directly without constructing
Y. By symmetry the columns of U produced by the SVD of

1√
n−1

X must also be the principal components.



10

FIG. 5 Data points (black dots) tracking a person on a ferris
wheel. The extracted principal components are (p1,p2) and
the phase is θ̂.

VII. DISCUSSION AND CONCLUSIONS

A. Quick Summary

Performing PCA is quite simple in practice.

1. Organize a data set as an m × n matrix, where m
is the number of measurement types and n is the
number of trials.

2. Subtract off the mean for each measurement type
or row xi.

3. Calculate the SVD or the eigenvectors of the co-
variance.

In several fields of literature, many authors refer to the
individual measurement types xi as the sources. The
data projected into the principal components Y = PX
are termed the signals, because the projected data pre-
sumably represent the underlying items of interest.

B. Dimensional Reduction

One benefit of PCA is that we can examine the vari-
ances CY associated with the principle components. Of-
ten one finds that large variances associated with the
first k < m principal components, and then a precipi-
tous drop-off. One can conclude that most interesting
dynamics occur only in the first k dimensions.

In the example of the spring, k = 1. This process
of throwing out the less important axes can help reveal
hidden, simplified dynamics in high dimensional data.
This process is aptly named dimensional reduction.

C. Limits and Extensions of PCA

Both the strength and weakness of PCA is that it is
a non-parametric analysis. One only needs to make the

FIG. 6 Non-Gaussian distributed data causes PCA to fail.
In exponentially distributed data the axes with the largest
variance do not correspond to the underlying basis.

assumptions outlined in section 4.5 and then calculate the
corresponding answer. There are no parameters to tweak
and no coefficients to adjust based on user experience -
the answer is unique11 and independent of the user.

This same strength can also be viewed as a weakness.
If one knows a-priori some features of the structure of a
system, then it makes sense to incorporate these assump-
tions into a parametric algorithm - or an algorithm with
selected parameters.

Consider the recorded positions of a person on a fer-
ris wheel over time in Figure 5. The probability distri-
butions along the axes are approximately Gaussian and
thus PCA finds (p1,p2), however this answer might not
be optimal. The most concise form of dimensional re-
duction is to recognize that the phase (or angle along the
ferris wheel) contains all dynamic information. Thus, the
appropriate parametric algorithm is to first convert the
data to the appropriately centered polar coordinates and
then compute PCA.

This prior non-linear transformation is sometimes
termed a kernel transformation and the entire parametric
algorithm is termed kernel PCA. Other common kernel
transformations include Fourier and Gaussian transfor-
mations. This procedure is parametric because the user
must incorporate prior knowledge of the structure in the
selection of the kernel but it is also more optimal in the
sense that the structure is more concisely described.

Sometimes though the assumptions themselves are too
stringent. One might envision situations where the prin-
cipal components need not be orthogonal. Furthermore,
the distributions along each dimension (xi) need not be

11 To be absolutely precise, the principal components are not
uniquely defined; only the sub-space is unique. One can always
flip the direction of the principal components by multiplying by
−1. In addition, eigenvectors beyond the rank of a matrix (i.e.
σi = 0 for i > rank) can be selected almost at whim. However,
these degrees of freedom do not effect the qualitative features of
the solution nor a dimensional reduction.
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Gaussian. For instance, Figure 6 contains a 2-D expo-
nentially distributed data set. The largest variances do
not correspond to the meaningful axes; thus PCA fails.

This less constrained set of problems is not trivial and
only recently has been solved adequately via Independent
Component Analysis (ICA). The formulation is equiva-
lent.

Find a matrix P where Y = PX such that
CY is diagonalized.

however it abandons all assumptions except linearity, and
attempts to find axes that satisfy the most formal form of
redundancy reduction - statistical independence. Mathe-
matically ICA finds a basis such that the joint probability
distribution can be factorized12.

P (yi,yj) = P (yi)P (yj)

for all i and j, i ,= j. The downside of ICA is that
it is a form of nonlinear optimizaiton, making the solu-
tion difficult to calculate in practice and potentially not
unique. However ICA has been shown a very practical
and powerful algorithm for solving a whole new class of
problems.

Writing this paper has been an extremely instructional
experience for me. I hope that this paper helps to demys-
tify the motivation and results of PCA, and the under-
lying assumptions behind this important analysis tech-
nique. Please send me a note if this has been useful to
you as it inspires me to keep writing!

APPENDIX A: Linear Algebra

This section proves a few unapparent theorems in
linear algebra, which are crucial to this paper.

1. The inverse of an orthogonal matrix is its
transpose.

The goal of this proof is to show that if A is an or-
thogonal matrix, then A−1 = AT .

Let A be an m × n matrix.

A = [a1 a2 . . . an]

where ai is the ith column vector. We now show that
AT A = I where I is the identity matrix.

Let us examine the ijth element of the matrix AT A.
The ijth element of AT A is (AT A)ij = ai

T aj.
Remember that the columns of an orthonormal matrix

are orthonormal to each other. In other words, the dot
product of any two columns is zero. The only exception is

12 Equivalently, in the language of information theory the goal is
to find a basis P such that the mutual information I(yi,yj) = 0
for i %= j.

a dot product of one particular column with itself, which
equals one.

(AT A)ij = ai
T aj =

{

1 i = j
0 i ,= j

AT A is the exact description of the identity matrix.
The definition of A−1 is A−1A = I. Therefore, because
AT A = I, it follows that A−1 = AT .

2. If A is any matrix, the matrices AT A and
AAT are both symmetric.

Let’s examine the transpose of each in turn.

(AAT )T = ATT AT = AAT

(AT A)T = AT ATT = AT A

The equality of the quantity with its transpose completes
this proof.

3. A matrix is symmetric if and only if it is
orthogonally diagonalizable.

Because this statement is bi-directional, it requires a
two-part “if-and-only-if” proof. One needs to prove the
forward and the backwards “if-then” cases.

Let us start with the forward case. If A is orthogo-
nally diagonalizable, then A is a symmetric matrix. By
hypothesis, orthogonally diagonalizable means that there
exists some E such that A = EDET , where D is a diag-
onal matrix and E is some special matrix which diago-
nalizes A. Let us compute AT .

AT = (EDET )T = ETT DT ET = EDET = A

Evidently, if A is orthogonally diagonalizable, it must
also be symmetric.

The reverse case is more involved and less clean so it
will be left to the reader. In lieu of this, hopefully the
“forward” case is suggestive if not somewhat convincing.

4. A symmetric matrix is diagonalized by a
matrix of its orthonormal eigenvectors.

Restated in math, let A be a square n × n symmet-
ric matrix with associated eigenvectors {e1, e2, . . . , en}.
Let E = [e1 e2 . . . en] where the ith column of E is the
eigenvector ei. This theorem asserts that there exists a
diagonal matrix D where A = EDET .

This theorem is an extension of the previous theorem
3. It provides a prescription for how to find the matrix E,
the “diagonalizer” for a symmetric matrix. It says that
the special diagonalizer is in fact a matrix of the original
matrix’s eigenvectors.

This proof is in two parts. In the first part, we see
that the any matrix can be orthogonally diagonalized if
and only if it that matrix’s eigenvectors are all linearly
independent. In the second part of the proof, we see that
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a symmetric matrix has the special property that all of
its eigenvectors are not just linearly independent but also
orthogonal, thus completing our proof.

In the first part of the proof, let A be just some ma-
trix, not necessarily symmetric, and let it have indepen-
dent eigenvectors (i.e. no degeneracy). Furthermore, let
E = [e1 e2 . . . en] be the matrix of eigenvectors placed
in the columns. Let D be a diagonal matrix where the
ith eigenvalue is placed in the iith position.

We will now show that AE = ED. We can examine
the columns of the right-hand and left-hand sides of the
equation.

Left hand side : AE = [Ae1 Ae2 . . . Aen]
Right hand side : ED = [λ1e1 λ2e2 . . . λnen]

Evidently, if AE = ED then Aei = λiei for all i. This
equation is the definition of the eigenvalue equation.
Therefore, it must be that AE = ED. A little rearrange-
ment provides A = EDE−1, completing the first part the
proof.

For the second part of the proof, we show that a sym-
metric matrix always has orthogonal eigenvectors. For
some symmetric matrix, let λ1 and λ2 be distinct eigen-
values for eigenvectors e1 and e2.

λ1e1 · e2 = (λ1e1)T e2

= (Ae1)T e2

= e1
T AT e2

= e1
T Ae2

= e1
T (λ2e2)

λ1e1 · e2 = λ2e1 · e2

By the last relation we can equate that
(λ1 − λ2)e1 · e2 = 0. Since we have conjectured
that the eigenvalues are in fact unique, it must be the
case that e1 · e2 = 0. Therefore, the eigenvectors of a
symmetric matrix are orthogonal.

Let us back up now to our original postulate that A is
a symmetric matrix. By the second part of the proof, we
know that the eigenvectors of A are all orthonormal (we
choose the eigenvectors to be normalized). This means
that E is an orthogonal matrix so by theorem 1, ET =
E−1 and we can rewrite the final result.

A = EDET

. Thus, a symmetric matrix is diagonalized by a matrix
of its eigenvectors.

5. For any arbitrary m × n matrix X, the
symmetric matrix XT X has a set of orthonor-
mal eigenvectors of {v̂1, v̂2, . . . , v̂n} and a set of
associated eigenvalues {λ1, λ2, . . . , λn}. The set of
vectors {Xv̂1,Xv̂2, . . . ,Xv̂n} then form an orthog-
onal basis, where each vector Xv̂i is of length

√
λi.

All of these properties arise from the dot product of
any two vectors from this set.

(Xv̂i) · (Xv̂j) = (Xv̂i)
T (Xv̂j)

= v̂T
i XT Xv̂j

= v̂T
i (λj v̂j)

= λj v̂i · v̂j

(Xv̂i) · (Xv̂j) = λjδij

The last relation arises because the set of eigenvectors
of X is orthogonal resulting in the Kronecker delta. In
more simpler terms the last relation states:

(Xv̂i) · (Xv̂j) =

{

λj i = j
0 i ,= j

This equation states that any two vectors in the set are
orthogonal.

The second property arises from the above equation by
realizing that the length squared of each vector is defined
as:

‖Xv̂i‖2 = (Xv̂i) · (Xv̂i) = λi

APPENDIX B: Code

This code is written for Matlab 6.5 (Release 13)
from Mathworks13. The code is not computationally ef-
ficient but explanatory (terse comments begin with a %).

This first version follows Section 5 by examining
the covariance of the data set.

function [signals,PC,V] = pca1(data)
% PCA1: Perform PCA using covariance.
% data - MxN matrix of input data
% (M dimensions, N trials)
% signals - MxN matrix of projected data
% PC - each column is a PC
% V - Mx1 matrix of variances

[M,N] = size(data);

% subtract off the mean for each dimension
mn = mean(data,2);
data = data - repmat(mn,1,N);

% calculate the covariance matrix
covariance = 1 / (N-1) * data * data’;

% find the eigenvectors and eigenvalues
[PC, V] = eig(covariance);

13 http://www.mathworks.com
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% extract diagonal of matrix as vector
V = diag(V);

% sort the variances in decreasing order
[junk, rindices] = sort(-1*V);
V = V(rindices);
PC = PC(:,rindices);

% project the original data set
signals = PC’ * data;

This second version follows section 6 computing PCA
through SVD.

function [signals,PC,V] = pca2(data)
% PCA2: Perform PCA using SVD.
% data - MxN matrix of input data
% (M dimensions, N trials)
% signals - MxN matrix of projected data
% PC - each column is a PC
% V - Mx1 matrix of variances

[M,N] = size(data);

% subtract off the mean for each dimension
mn = mean(data,2);
data = data - repmat(mn,1,N);

% construct the matrix Y
Y = data’ / sqrt(N-1);

% SVD does it all
[u,S,PC] = svd(Y);

% calculate the variances
S = diag(S);
V = S .* S;

% project the original data
signals = PC’ * data;
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