Mathematical Tools
for Neural and Cognitive Science

Fall semester, 2016

Section 3:
Linear Shift-invariant Systems

Linear shift-invariant (LSI) systems

® Linearity (previously discussed):

“linear combination in, linear combination out™

® Shift-invariance (new property):

“shifted vector in, shifted vector out”

® Note: These two properties are independent
(think of some examples...)




LSI system
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(as before, express input as
weighted sum of “impulses”)

LSI system
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(responses to impulses are
shifted copies of each other)




LSI system
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LSI systems are characterized by their “impulse response”

Convolution
T HE T
y(n) = %r(n—k)w(k)
7 | | 1 = > r(k)z(n—k)

® Sliding dot products
® Matrix description
® Boundaries: zero-padded, reflected, circular

® Examples: impulse, delay, average, difference




Feedback LSI system

* Recursive => possibly unstable

\éa « Infinite impulse response (IIR)
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(In general, we’ll stick to feedforward (FIR) systems)

2D convolution

® sliding window

Kernel
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Discrete Sinusoids

example : k = 2

—> “frequency” (cycles/vectorLength)

cos(wn), w = 21k /N . Tty e St T of
k) “frequency” ’ ° “ %

(radians/sample)
example : A = 1.6, ¢ = 67/32

e

More generally: fcos(wn — ) _?TTWT?@ I fﬂmh T 2

“amplitude” 0 10 2 %

“phase” (radians)

Shifting Sinusoids

Acos(wn — ¢) = Acos(¢) cos(wn) + Asin(¢) sin(wn)

... using the trigonometric identity:

cos(a — b) = cos(a) cos(b) + sin(a) sin(b)




Shifting Sinusoids

Acos(wn — ¢) = Acos(¢) cos(wn) + Asin(¢) sin(wn)

Asin ¢

fixed cos/sin vectors:
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A shifted sinusoidal vector can be written as
a weighted sum of two fixed sinusoidal vectors!

Shifting Sinusoids

Acos(wn — ¢) = Acos(¢) cos(wn) + Asin(¢) sin(wn)

A=1.6, ¢=2r1/12

%

fixed cos/sin vectors:

A shifted sinusoidal vector can be written as
a weighted sum of two fixed sinusoidal vectors!




Shifting Sinusoids

Acos(wn — ¢) = Acos(¢) cos(wn) + Asin(¢) sin(wn)

A=18, ¢=2n6/12
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fixed cos/sin vectors:
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A shifted sinusoidal vector can be written as
a weighted sum of two fixed sinusoidal vectors!

LSI response to sinusoids

x(n) = cos(wn) (input)
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LSI response to sinusoids

x(n) = cos(wn)

y(n) = Z r(m) cos (w(n —m)) (convolution formula)

—

LSI response to sinusoids

x(n) = cos(wn)

y(n) - Z Ir(m) cos (w (n N m)) (trig identity)

— cos(wn) sin(wn)

inner product of impulse response with cos/sin, respectively

l
:
:




LSI response to sinusoids

x(n) = cos(wn)
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LSI response to sinusoids

x(n) = cos(wn)

y(n) = Zr(m) cos (w(n —m))

= Zr(m) cos(wm) cos(wn) + Zr(m) sin(wm) sin(wn)
= cr(w) cos(wn) + Sr(w) sin(wn)
= (A, (w)cos(¢r(w))cos(wn) + (A, (w)sin(o,(w))pin(wn)
(convert rectangular to polar coordinates) Sp(W) fooo
Ar(w)' :
brlw)
cr(w)




LSI response to sinusoids

x(n) = cos(wn)

yn) = 3 r(m)cos (w(n — m)
= Zr(m) cos(wm) cos(wn) + Zr(m) sin(wm) sin(wn)

= cr(w) cos(wn) + sr(w) sin(wn)
=  A,(w)cos(¢r(w))cos(wn) + A,(w)sin(¢,(w)) sin(wn)

= Ar (w) COS (wn — gbr (w)) (trig identity, in the opposite direction)

Or(w)
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“Sinusoid in, sinusoid out” (with modified amplitude/phase)

LSI response to sinusoids

More generally, if input has amplitude A, and phase ¢, ,

z(n) = A, cos(wn — ¢,)

y(n) = cos(wn w
\

amplitudes multiply phases add

A\ 4

@;&0)
L — Ar(w)[

“Sinusoid in, sinusoid out” (with modified amplitude/phase)




Discrete Fourier transform (DFT)

® Construct an orthogonal matrix of sin/cos pairs,
at frequency multiples of o - /N radians/sample,
(le., 27k/N, for k=0,1,2,...N/2)

® For k=0 and kK = N/2, only need the cosine
part (thus, N/2+1 cosines, and N/2-1 sines)

® When we apply this matrix to an input vector,
think of output as paired coordinates

® Common to plot these pairs as amplitude/phase

[all details on board...]

The Fourier family

signal domain

| continuous | discrete

continuous | Fourier transform | discrete-time Fourier transform

frequency
domain

discrete | Fourier series discrete Fourier transform

we are here

The “fast Fourier transform” (FFT) is a computationally
efficient implementation of the DFT (cost with vector length as
Nlog(N), instead of N2).




LSI response to sinusoids

x(n) = cos(wn)

y(n) = Y r(m)cos(w(n—m))

= cr(w) cos(wn) + Sr(w) sin(wn)

= Ay (w)cos(¢r(w)) cos(wn) + A (w)sin(¢,(w)) sin(wn)

= A, (w)cos(wn — ¢ (w))

NOTE: These dot products are just the
Fourier transform of the impulse response r(m)!

Fourier & LSI
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Fourier & LSI
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note: only 3 (of many) frequency components shown

Fourier & LSI

¢x(2)
Az(2)

note: only 3 (of many) frequency components shown




Fourier & LSI
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LSI systems are characterized by their frequency response,
specified by the Fourier Transform of their impulse response

Complex exponentials:
“bundling” sine and cosine

e’ = cos() + isin(6)

eiwn - L - AT(QJ) ei(wn—¢r(w)) _ AT(W) e—id)r(w) eiwn
e




Complex exponentials:
“bundling” sine and cosine

e = cos(0) + isin(6)

eiwn - L — Ar(w) ei(wn—qbr(w)) — A (w) e—id)r(w) plwn

F.T. of impulse response!

Complex exponentials:
“bundling” sine and cosine

e’ = cos() + isin(6)

eiwn - L - AT(QJ) ei(wn—¢r(w)) _ AT(W) e—id)r(w) eiwn
e

—| L |— 7w)

Note: implies that complex exponentials are eigenvectors!




The “convolution theorem”
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convolve with 77

The “convolution theorem”

7 Y
convolve with 7
pointwise multiply by 7
7 Y
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Fourier Transform
WIOJSURI], JOLINO,]
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The “convolution theorem™

T e Pt ]

convolve with 7

Fourier Transform
WIOJSURI], JOLINO,]
OSIOAUI

pointwise multiply by 7

j=L%=FRFT% = FTy=RF"%
K (diagonal matrix)

Recap

® Linear system
=> defined by superposition

=> characterized by a matrix

® Linear Shift-invariant (LSI) system
=> defined by superposition and shift-invariance
=> characterized by a single impulse response

=> alternatively, characterized by frequency response (the
Fourier Transform of the impulse response!), which specifies an
amplitude multiplier and a phase shift.




What do we do with Fourier
Transforms?

Useful for representing/analyzing periodic
signals

Eigenvectors of LSI systems => useful for
analysis/design of these systems. In
particular, how do you identify the nullspace?

Discrete Fourier transform
(with complex numbers)

N—-1

T = Z rpe Wk where wy = 2k
n=0 N
| N1 |

Tn = = Z T e R (inverse)

N =

a_-\./.\.\e'...__.k




Visualizing the (discrete)
Fourier transform

® Two conventional choices for frequency axis:
- Plot frequencies from k=0 to k=N/2
= Plot frequencies from k=-N/2 to N/2-1

® Typically, plot Amplitude (and possibly
Phase, on a separate graph), instead of cosine/
sine (real/imaginary) parts
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e'" = cos(wn) + i sin(wn)

7 7 = fit(7) fFtshift()
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More examples

® constant

® sinusoid (see next slide)

® impulse

® Gaussian - “lowpass”

® DoG (difference of 2 Gaussians) - “bandpass”

® (Gabor (Gaussian windowed sinusoid) - “bandpass”™

[on board]

Retinal ganglion cells (1D)

Centre

Surround

Responsivity
(impulses per second)
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Spatial frequency (cycles per degree)

Spatial frequency (c/deg)

Enroth-Cugell and Robson (1984)




Sampling causes “aliasing”
]U U\\/ U
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Sampling process is linear, but many-to-one (non-invertible)
“Aliasing” - one frequency masquerades as another

Given the samples, it is common/natural to assume that they
arose from the lowest compatible frequency...

Effect of sampling on the Fourier Transform:
Sum of shifted copies

___________
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Real-world
aliasing

downsample by 2

Pre-filtering to avoid spectral overlap (“aliasing”)
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Real-world
aliasing

downsample by 2,
with pre-filtering




