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Linear shift-invariant (LSI) systems

• Linearity (previously discussed):
“linear combination in, linear combination out”

• Shift-invariance (new property): 
“shifted vector in, shifted vector out”

• Note: These two properties are independent 
(think of some examples...)
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(as before, express input as 
weighted sum of “impulses”)
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(responses to impulses are 
  shifted copies of each other)
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LSI systems are characterized by their “impulse response”

 Convolution

• Sliding dot products

• Matrix description

• Boundaries: zero-padded, reflected, circular

• Examples: impulse, delay, average, difference
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 Feedback LSI system
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(In general, we’ll stick to feedforward (FIR) systems)

• Infinite impulse response (IIR)
• Recursive => possibly unstable

2D convolution

[figure c/o Castleman]

• sliding window



Discrete Sinusoids 
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, ! = 2⇡k/Ncos(!n)

Shifting Sinusoids
A cos(⇥n� �) = A cos(�) cos(⇥n) + A sin(�) sin(⇥n)

... using the trigonometric identity: 

cos(a� b) = cos(a) cos(b) + sin(a) sin(b)



Shifting Sinusoids
A cos(⇥n� �) = A cos(�) cos(⇥n) + A sin(�) sin(⇥n)

  A sin φ
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A shifted sinusoidal vector can be written as 
a weighted sum of two fixed sinusoidal vectors!
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fixed cos/sin vectors:
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Shifting Sinusoids
A cos(⇥n� �) = A cos(�) cos(⇥n) + A sin(�) sin(⇥n)
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fixed cos/sin vectors:
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 A = 1.6,  φ = 2π1/12

A shifted sinusoidal vector can be written as 
a weighted sum of two fixed sinusoidal vectors!
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Shifting Sinusoids
A cos(⇥n� �) = A cos(�) cos(⇥n) + A sin(�) sin(⇥n)
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fixed cos/sin vectors:

A shifted sinusoidal vector can be written as 
a weighted sum of two fixed sinusoidal vectors!

x(n) = cos(�n)

LSI response to sinusoids

L

(input)



x(n) = cos(�n)

(convolution formula)

LSI response to sinusoids
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x(n) = cos(�n)

inner product of impulse response with cos/sin, respectively

(trig identity)

LSI response to sinusoids
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x(n) = cos(�n)
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LSI response to sinusoids

x(n) = cos(�n)
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LSI response to sinusoids



x(n) = cos(�n)

L
“Sinusoid in, sinusoid out” (with modified amplitude/phase)

LSI response to sinusoids

(trig identity, in the opposite direction)

phases addamplitudes multiply

L
“Sinusoid in, sinusoid out” (with modified amplitude/phase)

More generally, if input has amplitude        and phase       ,A
x

�
x

LSI response to sinusoids



Discrete Fourier transform (DFT)

• Construct an orthogonal matrix of sin/cos pairs, 
at frequency multiples of             radians/sample,
(i.e.,                                                         )

• For                                    , only need the cosine  
part (thus, N/2+1 cosines, and N/2-1 sines)

• When we apply this matrix to an input vector, 
think of output as paired coordinates

• Common to plot these pairs as amplitude/phase 

[all details on board...]

The Fourier family

we are here

signal domain
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The “fast Fourier transform” (FFT) is a computationally 
efficient implementation of the DFT (cost with vector length as 
Nlog(N), instead of N2).



x(n) = cos(�n)

NOTE: These dot products are just the 
Fourier transform of the impulse response r(m)!

LSI response to sinusoids
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Fourier & LSI
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Fourier & LSI

note: only 3 (of many) frequency components shown

⇥x L

Fourier & LSI

note: only 3 (of many) frequency components shown
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LSI systems are characterized by their frequency response, 
specified by the Fourier Transform of their impulse response

⇥x L

Fourier & LSI

Complex exponentials:
 “bundling” sine and cosine

ei� = cos(�) + i sin(�)

ei�n L



ei� = cos(�) + i sin(�)

ei�n L

F.T. of impulse response!

Complex exponentials:
 “bundling” sine and cosine

ei� = cos(�) + i sin(�)

ei�n L

L

Note: implies that complex exponentials are eigenvectors!

Complex exponentials:
 “bundling” sine and cosine



The “convolution theorem”

convolve with 
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The “convolution theorem”



The “convolution theorem”

convolve with 
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Recap

• Linear system 
=> defined by superposition

=> characterized by a matrix

• Linear Shift-invariant (LSI) system
=> defined by superposition and shift-invariance

=> characterized by a single impulse response

=> alternatively, characterized by frequency response (the 
Fourier Transform of the impulse response!), which specifies an 
amplitude multiplier and a phase shift.



What do we do with Fourier 
Transforms?

Useful for representing/analyzing periodic 
signals 

Eigenvectors of LSI systems => useful for 
analysis/design of these systems.  In 
particular, how do you identify the nullspace?

Discrete Fourier transform
(with complex numbers)
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Visualizing the (discrete) 
Fourier transform

• Two conventional choices for frequency axis:
- Plot frequencies from k=0 to k=N/2
- Plot frequencies from k=-N/2 to N/2-1

• Typically, plot Amplitude (and possibly 
Phase, on a separate graph), instead of cosine/
sine (real/imaginary) parts

Example for k=2, N=32 (note indexing and amplitudes): 
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More examples

• constant

• sinusoid (see next slide)

• impulse

• Gaussian - “lowpass”

• DoG (difference of 2 Gaussians) - “bandpass”

• Gabor (Gaussian windowed sinusoid) - “bandpass”

[on board]

Retinal ganglion cells (1D)

Enroth-Cugell and Robson (1984)



Sampling causes “aliasing”

“Aliasing” - one frequency masquerades as another

Sampling process is linear, but many-to-one (non-invertible)

Given the samples, it is common/natural to assume that they 
arose from the lowest compatible frequency... 

Effect of sampling on the Fourier Transform:
Sum of shifted copies



Real-world
aliasing

downsample by 2

Pre-filtering to avoid spectral overlap (“aliasing”)

L(!)

L(!)

lowpass filter, 
cutoff at   ⇡/�



Real-world
aliasing

                 ,  
with pre-filtering

downsample by 2


