Instructor(s): | Pascal Wallisch & Eero Simoncelli |
Teaching Assistant(s): |
Laura Gwilliams (leg5 AT nyu DOT edu), Paul Levy (paul DOT levy AT nyu DOT edu), Robert Guangyu Yang (gyyang.neuro AT gmail DOT com) |
Time: |
Lectures: Tuesday/Thursday, 10:00-12:00 Labs: selected Fridays, 9:00-12:00 |
Location: |
Lectures: Meyer Hall (4 Washington Place), Rm. 815 Labs: Meyer Hall, Rm. 815 |
Topics include: Linear algebra, least-squares and total-least-squares regression, eigen-analysis and PCA, linear shift-invariant systems, convolution, Fourier transforms, Nyquist sampling, basics of probability and statistics, hypothesis testing, model comparison, bootstrapping, estimation and decision theory, signal detection theory, models of neural spike generation, white noise (reverse-correlation) analysis.
Prerequisites: Algebra, trigonometry, and calculus. Some
experience with matrix algebra and/or computer programming is helpful,
but not required. The real prerequisites are an aptitude for
logical and geometric reasoning, and a willingness to work hard!
We will be using Piazza for class discussion, which allows you to post
questions or comments, and receive answers, on any aspect of the course.
Our class page is:
https://piazza.com/nyu/fall2016/psychga2211neurlga2207/home
Date | Topic | Handouts | Homework |
---|---|---|---|
Tue, Sep 6 |
Introduction to the course Linear algebra I: vectors, vector spaces, inner products |
Course description
(pdf) Slides: linear algebra (all) (pdf) Notes: linear algebra (pdf) |
|
Thu, Sep 8 | Lab: Matlab I: variables, operations, basic graphics, scripts |
Before lab, install matlab
(info)
Lab1 script file (.html .m) Matlab primer (pdf) (also, see Resource links below) |
|
Fri, Sep 9 8:30-10am |
Linear algebra II: projection, linear systems, matrices
(video) |
Homework formatting instructions:
(pdf) |
Homework 0 (matlab practice - optional) (pdf) |
Tue, Sep 13 | Linear algebra III: orthogonal/diagonal matrices, geometry
(video) |
||
Thu, Sep 15 | Lab: Matlab II: conditionals, iteration, scripts, functions
(video) |
Lab2 script file (.html .m) |
Homework 1,
due: 29 Sep Files: mtxExamples.mat |
Fri, Sep 16 | Linear algebra IV: SVD, geometry, nullspaces, inverses
(audio only) |
Slides: SVD, nullspace (ppt) | |
Tue, Sep 20 | Lab: Matlab III - functions, debugging
(video) |
Lab3 script file (.html
.m) Auxilliary files: degToRad, radToDegree, widthFinder |
|
Thu, Sep 22 | Linear Algebra, extended example: Trichromacy
(video) |
Slides: Trichromacy (pdf) | |
Fri, Sep 23 10-12am |
Regression I: Least Squares regression
(video) |
Slides: Regression (all)
(pdf) |
|
Tue, Sep 27 | Regression II: multiple regression, geometry and SVD | ||
Thu, Sep 29 | Regression III: constraints, outliers
(video) |
||
Fri, Sep 30 | [no lab - Psychology mini-convention] | ||
Tue, Oct 4 | Regression IV: Total least squares, Principal component analysis
(video - partial) |
Notes: Least Squares regression (pdf) |
Homework 2,
due: Files: colMatch.mat, humanColorMatcher.p, regress1.mat, regress3.mat, PCA.mat |
Thu, Oct 6 | Linear Shift-invariant (LSI) Systems I: convolution | ||
Fri, Oct 7 | Lab: regression/PCA |
Lab4 script file (.html
.m) |
|
Tue, Oct 11 | LSI Systems II: sinusoids and LSI systems
(video) |
||
Thu, Oct 13 | LSI Systems III: Fourier Transform
(video) |
||
Fri, Oct 14 | [no lab] | ||
Tue, Oct 18 | Lab: convolution, vision examples
(video) |
Lab5 script file (.html
.m) Lab5 slides (Lab5.ppt) |
|
Thu, Oct 20 | LSI Systems IV: the "convolution theorem", Fourier visualization
(video) |
||
Fri, Oct 21 | LSI Systems V: sampling, examples
(video) |
Slides: LSI systems (all)
(pdf) |
|
Tue, Oct 25 | Statistics I: summary, average, median, dispersion, correlation |
Slides: Statistics I
(ppt) |
Homework 3,
due: 8 Nov
Files: unknownSystem1.p, unknownSystem2.p, unknownSystem3.p, myMeasurements.mat |
Thu, Oct 27 | Statistics II: p-values, statistical tests
(video) |
Slides: Statistics II
(ppt) |
|
Fri, Oct 28 | [no lab - happy Halloween!] | ||
Tue, Nov 1 | Statistics III: Perils and pitfalls of tests, effect size, power
(video) |
Slides: Statistics III
(ppt) |
|
Thu, Nov 3 | Lab: Fourier analysis |
Lab6 script file (.html
.m) Lab6 slides (Lab6.pptx) |
|
Fri, Nov 4 10-12am |
Remainder of "periles and pitfalls" Probability I: random variables, distributions (video) |
||
Tue, Nov 8 | Probability II: density transformations, joint/marginal/conditional
distributions, independence
(video) |
||
Thu, Nov 10 | Probability III: expectation, mean/covariance, linear
combinations, distribution of a sum
(video) |
||
Fri, Nov 11 | [no lab - enjoy the SfN meeting!] | ||
Tue, Nov 15 | [no class - enjoy the SfN meeting!] | ||
Thu, Nov 17 | Probability IV: central limit theorem, Gaussians
(video) |
Homework 4,
due: |
|
Fri, Nov 18 | Lab: statistics |
Lab7 script file (.html
.m) Lab7 slides (Lab7.pptx) |
|
Tue, Nov 22 | Inference I: Likelihood, ML estimation, MAP, Bayes
(video) |
||
Thu, Nov 24 | [no class - happy thanksgiving!] | ||
Fri, Nov 25 | [no lab - thanksgiving break] | ||
Tue, Nov 29 | Inference II: bias/variance, bootstrapping, overfitting, regularization, cross-validation
(video) |
Slides: Statistics (all)
(pdf) Bootstrapping handout (pdf) |
|
Thu, Dec 1 | Extended example: spike-triggered neural characterization
(video) |
||
Fri, Dec 2 | Lab: simulation, resampling
(video) |
Lab8 script file (.html
.m) Lab8 slides (Lab8.pptx) |
|
Tue, Dec 6 | Spike-triggered neural characterization | Slides: Fitting LNP models (pdf) |
Homework 5,
due: 21 Dec Files: psychopath.mat, runGaussNoiseExpt.m, runBinNoiseExpt.m |
Thu, Dec 8 | LNP models (continued), Signal detection theory
(video) |
||
Fri, Dec 9 | [no lab] | ||
Tue, Dec 13 | [no class - NYU legislative day] | ||
Thu, Dec 15 | Signal Detection (continued) / Multi-dimensional classification
(video) |
||
Fri, Dec 16 | Lab: Signal detection theory |
Lab9 script file (.m) Lab9 slides (Lab9.pptx) |
Scroll to top of page |