
PSYCH-GA.2211/NEURL-GA.2201 – Fall 2014
Mathematical Tools for Cognitive and Neural Science

Homework 3

Due: 5 Nov 2014
(late homeworks penalized 10% per day)

Save the solutions to each numbered problem as sections of a file called hw3.m in a folder called
hw3 Lastname, along with additional files containing any functions you create. Send a zipped
copy of this folder as an attachment in an email message with these attributes:

To: catherio@nyu.edu, asr443@nyu.edu
Subject: Math Tools HW3

Don’t wait until the day before the due date... start now!

1. Principal components. Load the file PCA.mat into your MATLAB environment. You’ll find
a matrix M , whose rows contain data in the form of 4-vectors. Each row gives the firing rate
of a single neuron under four different stimulus conditions. We cannot visualize the data
in this form, but would like to know how the neurons as a population are encoding these
four stimuli. For example, we’d like to know how well we could distinguish between these
stimuli by observing these neural responses.

(a) First, modify the matrix M , re-centering the data around zero by subtracting the mean
of the rows (a 4-vector) from all rows. Compute the principal components of the re-
centered data in two ways: using svd and using eig, verifying that these give the same
answer. Also compute the four associated eigenvalues (or equivalently, the squared
singular values) associated with each vector. Do the data points live close to a subspace
of dimensionality less than four?
Now compute the eigenvalues, λk, of the covariance matrix MTM (or, alternatively, the
squared singular values of M ), and plot them as a function of k, for k = 1, 2, 3, 4. Do
the data points live close to a subspace of dimensionality less than four?

(b) Look at the axes of the subspace where the neural responses are varying most (i.e.,
the eigenvectors corresponding to the largest eigenvalues). How would you describe
these? Which stimuli can be easily distinguished by looking at the neural responses,
and which cannot be?

(c) Project the re-centered data in M onto the first principal component (i.e., compute the
inner product of the data vectors with the eigenvector corresponding to the maximal
eigenvalue). Plot a histogram (using hist) of these values. Show that the sum of
squares of these values is equivalent to λ1. What proportion of the total variability of
the data (sum of squared norms of all data vectors) does this component account for?

(d) Show a scatter plot of the data projected onto the first two principal components (that
is, plot the inner product of the data with the first component versus the inner prod-
uct with the second component). Use plot, requesting circular plot symbols and no
connecting lines. Use axis(’equal’) to set the two axes to use equal scales. Show
that the sum of the squared lengths of these projected vectors is equal to λ1 + λ2. What
proportion of the total variability of the data do these two components account for?
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2. Linear shift-invariant (time-invariant) systems. Written exercises: Oppenheim & Schafer,
problems 2.35 and 2.36 [see attached pages]. Note: δ[n] indicates a signal that contains a
single impulse at location n = 0.

3. LSI system characterization. You are experimenting with three unknown systems, embod-
ied in compiled matlab functions unknownSys1.p,unknownSys2.p, and unknownSys3.p
that each take an input column vector of length N = 48. The response of each is a column
vector (of the same length). Your task is to examine them to see if they behave like they’re
linear and/or shift-invariant with circular boundary-handling. For each system,

(a) “Kick the tires” by measuring the response to an impulse in the first position of a vector
of length N = 48. Check that this impulse response is shift-invariant by comparing to
the response to an impulse in a few later positions. Check that the response to a sum of
two of these impulses is equal to the sum of their individual responses.

(b) If the previous tests were positive, examine the response of the system to sinusoids
with frequencies {2π/N, 4π/N, 6π/N, 12π/N}, and random phases, and check whether
the outputs are sinusoids of the same frequency (i.e., verify that the output vector lies
completely in the subspace containing all the sinusoids of that frequency).

(c) If the previous tests were positive, verify that the change in amplitude and phase of
the output sinusoids is predicted by the amplitude (abs) and phase (angle) of the
appropriate term of the Fourier transform of the impulse response gathered in the first
part.

4. Convolution in matlab. Create a random vector of length 3, r = rand(3,1), and suppose
this is finite-length impulse response of a linear shift-invariant system. Because it is LSI, the
response of this system to any input vector in can be computed as a convolution.

(a) For input vectors of length 8, compute the matrix that represents the linear system.
What is the size, and organization of this matrix?

(b) How does MATLAB’s conv function handle boundaries?

(c) Using conv, compute the response to an input vector of length 48 containing a single-
cycle cosine. Is this a single-cycle sinusoid? Why or why not? If not, what modification
is necessary to the conv function to ensure that it will behave according to the “sine-
in, sine-out” behavior expected of LSI systems?

5. Bandpass Difference-of-Gaussians (DoG) filter.
(a) Create a one-dimensional linear filter that is a difference of two Gaussians (each nor-
malized to sum to 1), and with standard deviations 1.5 and 3.5 samples. The filter should
contain 15 samples, with both Gaussians centered on the middle (8th) sample.

(b) Plot the amplitude of the Fourier transform of this filter, sampled at 32 locations (MAT-
LAB’s fft function takes an optional additional argument). What kind of filter is this?
Estimate (by eye) the frequency at which the filter will have maximal response. Estimate (by
eye) a lower and a higher frequency at which the response is about 25% of the peak.

(c) Create three unit-amplitude 32-sample sinusoidal signals at the three frequencies (low,
mid, high) that you found in part (b). Convolve the filter with each, and verify that the
amplitude of the response is consistent with the answers you gave in part (b). (hint: either
project the response onto sine and cosine of the appropriate frequency, or compute the DFT
of the response and measure ampitude at the appropriate frequency).










