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1 Probability Basics

Suppose we perform an experiment, measuring the intensity of a constant light source using a
photometer. Each time we make this measurement, we get a slightly di�erent answer. Although
the answers will presumably cluster around the �correct� value, there is no way for us avoid the
variability in the measurements. The �eld of probability provides an abstract language for
describing the uncertainty of these measurements. The �eld of statistics tells us how to take a
�nite set of measurements and infer something about the world.

1.1 Distributions and their manipulation

Figure 1: A 2-D joint
distribution and one of
its 1-D marginals.

The primary entities of probability theory are random variables and
their associated probability distributions. In this example, each
light measurement is an instantiation of the random variable x; the
probability that on each measurement it will take di�erent values is
given by a probability distribution (or density) function (PDF). This
is a function mapping possible values of x to their probabilities. The
values for x might be discrete (like a coin �ip) or continuous (like a
reaction time). A fundamental property of probability distributions
is that they sum to one over all possible values for x, ie in the discrete
case ∑

x

IP(x) = 1

with IP(x) > 0. Here, IP(x) can be thought of like a histogram of long-
run frequencies for di�erent measurements x. When x is continuous
(like in the limit as the histogram bin size becomes in�nitessimally
small) the analogous expression is:∫

IP(x)dx = 1

and, since the chance that x will take on any particular continuous value is typically in�nitessi-
mal, IP(x) actually measures probability density rather than probability. Probability is de�ned
by integrating the density over a range of continuous values: prob(a < x < b) =

∫ b
a IP(x)dx. A

potential point of confusion is that probabilities are always less than one (and can be interpreted



like a fractional frequency of occurrence), but densities need not be. For instance, if IP(x) is
uniform in the continuous range 0-0.5, then the density IP(x) = 2 for 0 ≤ x ≤ 0.5 (so that the
function integrates to 1 over that range) but the probability that x takes on a value between 0
and 0.25 is 1/2.

Because they sum to one, PDFs are analogous to functions built up out of chunks of modeling
clay. Various transformations of PDFs can shift the clay from bin to bin, but the total amount
of clay always stays the same.

Most interesting uses of probability concern reasoning about the relationship between multiple
random variables. Suppose that the actual light intensity being measured is y. The relationship
between x and y can be summarized by the joint distribution IP(x, y), which maps a pair of
values x, y to the probability (density) that both will jointly occur (FIgure 1). It is thus like a
two-dimensional table of numbers, or a mound of clay piled on a �at surface. We can recover
other important distributions by operating on IP(x, y). For instance, if we care only about x we
can recover the one-variable marginal distribution IP(x) by summing up the probability of
each x occurring with di�erent values of y

IP(x) =
∫

IP(x, y)dy

like shoveling the modeling clay onto the x axis (FIgure 1). This is just the familiar sum rule
from probability theory (i.e., the probability that either of two mutually exclusive events will
occur is the sum of their two probabilities), but applied over the whole distribution.

Figure 2: A joint distribution and a conditional
distribution. Because the two variables (here,
the IQ of a random Swedish male and that of his
younger brother) are nonindependent, the joint
distribution is tilted and the conditional (green)
and marginal (blue) are di�erent.

From the joint distribution, we can also re-
cover the conditional distribution IP(x|y),
the probability distribution over x (the mea-
surement) given that y (the true value) takes
on any particular value (Figure 2). This is
a function of both x and y but is normally
viewed as a one-dimensional distribution (over
x) for some �xed y:

IP(x|y) =
IP(x, y)
IP(y)

Since IP(y) =
∫

IP(x, y)dx, the division renor-
malizes the 2D function so that each row sums
to one. Thus, by selecting the row of the func-
tion corresponding to some particular y we
recover a normalized 1D distribution over x,
given that particular value for y.

The de�nition of the conditional probability is a rearranged version of the familiar product
rule of probability (i.e., the probability of two events occurring together is the product of their
probabilities, with one conditional on the other)

IP(x, y) = IP(y)IP(x|y)

though again we apply it to transform a whole distribution. Two random variables are statisti-
cally independent (like separate rolls of a die) if the above expression simpli�es to IP(x, y) =
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IP(y)IP(x); that is, the two-variable joint distribution separates into the outer product of two
one-variable marginal distributions. It follows that for independent variables, the conditional
and marginal distributions are equal: IP(x) = IP(x|y). That is, knowing that y takes a par-
ticular value doesn't change the distribution over x. Conversely, if x and y covary (are not
independent), then IP(x) 6= IP(x|y) and conditioning on a value for one variable changes the
distribution over the other (Figure 2).

Figure 3: The joint distribution of two indpen-
dent variables factors into the product of two
1-D maginals.

From the de�nition of the conditional proba-
bilities IP(x|y) and IP(y|x) we can obtain the
important Bayes' rule, which describes the re-
lationship between the two:

IP(y|x) =
IP(x|y)IP(y)

IP(x)

Among other things, this rule exposes the
close relationship between the forward or
measurement model implicit in the dis-
tribution IP(x|y)� which describes how our
light meter works to produce a noisy measure-
ment x from some true value y � to an inference or inverse model IP(y|x), which gives a
distribution over y conditional on some measured value x. In interpreting this equation, we nor-
mally view the terms as functions of y for a �xed measurement x. The conditional IP(x|y) is also
called the likelihood function, since (viewed, confusingly, as a function of x) it measures the
likelihood of x given di�erent ys. The marginal IP(y) is known as the prior probability of y (ie
the distribution over y absent any information about x, like the chance that di�erent light inten-
sities will be encountered in the world generally). For any particular x, IP(x) =

∫
IP(x|y)IP(y)dy

is just a normalizing constant. Bayes Rule therefore says that the probability of y given some
measurement x is larger for ys that have a high likelihood of producing x, and also for ys that
were more likely to begin with.

1.2 Sums of independent random variables

If x and y are independent random variables distributed as IP(x) and IP(y), respectively, and we
de�ne a new random variable z as the sum of one sample from each: z = x+y, then it is easy to
show that the distribution IP(z) is the convolution of IP(x) and IP(y). This is because to obtain
the probability of any particular z = Z, we must sum over the joint probability IP(x)IP(y) for
all pairs x, y that sum to Z: IP(z = Z) =

∫
dxIP(x = X)IP(y = Z − X), which is just the

convolution.

1.3 Transformations of distributions

Given some monotonic function f(x) of a random variable x, e.g. y = x3, we may ask what
is the distribution of y, IP(y), in terms of IP(x). The answer to this question arises from the
fact that the distributions must both be normalized, therefore, the transformation from IP(x) to
IP(y) must preserve density. Locally, |IP(y)dy| = |IP(x)dx|; rearranging terms and substituting
y = f(x) we have IP(y) = IP(x)/|(df(x)/dx)|. To evaluate this expression as a density over y,
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for each y we must evaluate the right-hand side at the point x = f−1(y). This produces the
rather more confusing expression IP(y) = IP(f−1(y))/|(df(f−1(y))/dx)|. That is, the density
IP(y) is the original density IP(x), rescaled inversely by the local �slope� of f(x) at that point,
df(x)/dx, which measures how �stretched out� is the density at x when transformed to f(x)
(Figure 4). This is all evaluated at the point that maps to y,x = f−1(y).

Figure 4: Transformation of a distribution:
Equal amonts of probability density (green and
pink) in the original distribution map to equal
amounts of density in the transformed distribu-
tion, but are spread out uneventy according to
the slope of the transforming function.

One particularly useful f(x) for such trans-
formations is the cumulative density func-
tion (CDF), which is de�ned as f(x) =∫ x
−∞ IP(x)dx: that is, the total probability
mass at values x or smaller. Since the slope of
the CDF, df(x)/dx, is just IP(x) itself, trans-
forming x by its CDF produces a uniform dis-
tribution over [0, 1]. This can be useful for
gain control of experimental measurements,
and also (by reversing the transformation) can
be used to generate random variables with an
arbitrary distribution, by generating a uni-
form [0, 1] variable then transforming it ac-
cording to the inverse CDF of the desired den-
sity.

1.4 Expectation, moments, and co-

variance

Given some function f(x)of a random vari-
able, as above, it can also be useful to
compute the average or expected value of
f(x), weighted according to the probabilities
P (x). This is written IE[f(x)] and de�ned as∫

IP(x)f(x)dx. If you think of f(x) as like a
vector of values for di�erent x (e.g., for x2,
[1, 4, 9, ...]) then, geometrically, taking an expectation is like a dot product between those and a
vector of probabilities for the di�erent values of x (e.g., for a fair die, [1/6, 1/6, 1/6, ...]). That
is, expectation is a projection. From the linearity of this operation follow useful properties for
manipulating expectations, e.g., IE[f(x) + g(x)] = IE[f(x)] + IE[g(x)] and IE[cf(x)] = cIE[f(x)].

Some important examples are the mean IE[x] (that is, the average value of x itself) and the
variance IE[(x − IE[x])2], which measures the expected average spread of the measurements,
quanti�ed as the squared distance around their mean. For a joint distribution IP(−→x ) over N
multiple random variables, which we write with vector notation −→x = [x1, x2, ...], the mean IE[−→x ]
averages vectors according to their probability, which amounts to computing the mean for each
element separately. The analogue of the variance is the covariance matrix IE[(−→x − IE[−→x ])(−→x −
IE[−→x ])T ], which (since this is an outer product) is an NxN matrix.

In two dimensions, and assuming IE[−→x ] = −→0 to simplify the notation (for the full expression,
substitute (x1 − IE[x1]) for x1 throughout, and similarly for x2), the covariance matrix has the
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form: [
IE[x2

1] IE[x1x2]
IE[x1x2] IE[x2

2]

]
where the diagonal terms measure the spread along x1 and x2 marginally, and the o�diagonal
term captures the shape or tilt of the distribution. If x1 and x2 are independent, then the
o�diagonal terms will be zero, because the factorization IP(x, y) = IP(x)IP(y) allows separating
the expectation of the product into the product of expectations IE[x1]IE[x2]. Conversely, if x1

tends to be high (relative to its mean) when x2 is high, then they tend to be both positive
or both negative at the same time so the average value of their product is positive, and the
distribution will tilt right.

Finally, in multiple dimensions we might de�ne a sort of generalized variance as the spread
along any direction speci�ed by some unit vector −→u . In particular, if we take IE[−→x ] = −→0 (or
rede�ne −→x as −→x − expect[−→x ]), then project measurements −→x onto −→u , ie −→u T−→x , this will result
in a 1D distribution with variance IE[(−→u T−→x )2] = IE[−→u T−→x−→x T−→u ] = −→u T IE[−→x−→x T ]−→u which,
�nally, equals −→u TC−→u . That is, the covariance matrix contains all the information necessary to
compute the spread (extent, generalized variance) of the distribution along any direction.

1.5 The amazing Gaussian

A particularly important form of distribution is the Gaussian. In one dimension, it is the familiar
bell curve, given by IP(x) ∝ exp[−(x− µ)2/2σ2], for mean µ and variance σ2. (The square root
of the variance, σ, is the standard deviation.) Here, and throughout, we omit the normalizing
constant 1/(

√
2πσ) implied by the constraint that P (x) sums to one.)

As a joint distribution over nmultiple random variables −→x = [x1, x2, ...], the expression for the
Gaussian is

IP(−→x ) ∝ exp[−(−→x −−→µ )TC−1(−→x −−→µ )/2]

with mean −→µ and covariance C.

Gaussians have a number of properties that make them exceptionally useful, among them:

1. The sum of two Gaussian random variables is itself Gaussian. In particular, if x and y are
Gaussians with means µx and µy and variances σ2

x and σ2
y then their sum is Gaussian with

mean µx + µy and variance σ2
x + σ2

y . These results can be obtained from the convolution
theorem, together with the fact that the Fourier transform of a Gaussian is also a Gaussian.
From these results it also follows that the average of N draws from x (ie their sum, divided
by N) has mean µx and variance decreasing with N , i.e. σ2/N .

2. In fact, the sum or average of random variables with any distribution, so long as they are
independent and identically distributed is also Gaussian, in the limit as you sum more and
more of them. (This is called the �Central Limit Theorem.�)

3. If −→x is distributed as a multidimensional Gaussian, then its conditional and marginal
distributions are also Gaussians. That is, if one slices through a Gaussian (by conditioning
on a particular value for some of its variables, and renormalizing what remains) or sums
over some of the variables in the Gaussian to compute a marginal distribution over the
remaining variables, then in both cases the resulting distributions are still Gaussians.
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2 Statistical Estimation

The previous section was about abstract mathematical descriptions of probability. Now we
imagine ourselves in a more practical context, in which we've made some observations (i.e., ex-
perimental measurements), from which we want to estimate some quantity. In general, each time
we make a measurement, it comes out di�erently. This unpredictability might arise either from
aspects of the environment that are beyond our control (eg., stray electromagnetic radiation),
or from unobservable �uctuations within the system itself (eg., �ow of individual ions through
channels in a membrane), or from uncertainties introduced by the measurement process. We
refer to the quantity we're trying to measure as the �signal�, and all these sources of uncertainty
as �noise�. We describe the noise using random variables.

Consider an example in which we wish to measure the brightness of a constant light source.
Our measurement is corrupted by the quantal nature of light, by disturbances in the medium
(air) through which the light must propagate, and by inacuraccies in our measurement device.
To make the problem simpler, it is often assumed that such measurement uncertainties are
combined additively along with the �true� value to yield the measurement:

IP(m|b) = b+ n (1)

Here n is a random variable that represents the combination of three sources of uncertainty
mentioned above. The right side of equation (1) is known as the �likelihood� function: it tells us
the likelihood of our measurements given a particular value of b. Now, the problem of estimation
is to invert this equation: We want estimate of b, given a �nite set of measurements {mk}. We'll
notate our estimate as b̂({mk}), with the �hat� indicating that this is not the true b, and the
parentheses indicating that it is a function of the data. More compactly, we can also bundle the
mk's into a vectxor ~m.

Before discussing speci�c estimators, it should be intuitively obvious that we'll want to minimize
the error in our estimates � that is, the di�erence between the estimate and the true value. We
decompose this error into two distinct pieces:

Bias : This is the average error in the estimator:

B(b) = IEn

[
b̂(~m)− b

]
An estimator that is (on average) equal to the true value is called unbiased.

Variance : This is simply the variance of the error:

V (b) = IEn

[
(b̂(~m)− b−B(b))2

]
Notice that the mean squared error is just the sum of the squared bias and the variance.

Now how do we decide on an estimator? As with most such questions, the answer is �it depends
on the problem�. But it is worth knowing about three particular estimators that are most
commonly used, and which are built upon each other. First, suppose that all we know about

6



our problem is the likelihood function of equation (1). In this case, the simplest choice is to
choose the value of b that makes the measurements most likely:

b̂ML(~m) = arg max
b

IP(~m|b)

This is known as the Maximum Likelihood estimator (MLE).

Take the example of light measurement, and assume that n is zero-mean, Gaussian distributed,
with variance σ2. Assume we make N measurements, and that these are statistically indepen-
dent. Then the likelihood function is a product of the individual likelihoods:

IP(~m|b) =
∏
k

IP(mk|b)

=
∏
k

exp[−(mk − b)2/2σ2]

To compute the estimate, we could maximize this expression, but it's simpler to maximize the
log:

b̂(~m) = arg max
b

log IP(~m|b)

= − arg max
b

∑
k

(mk − b)2/2σ2

Taking the derivative of the righthand expression with respect to b and setting equal to zero
gives: ∑

k

2(mk − b̂(~m)) = 0

or

b̂(~m) =
1
N

∑
k

mk

After all that, the answer is quite simple: take the average of the measurements! [Now, verify
that this is unbiased, and compute the variance.]

Now we consider a more sophisticated estimator. Suppose we had some knowledge of the values
that b could assume. For example, we might know that it must lie within a particular range.
Or perhaps some values, while possible, are extremely unliky to occur in the real world. This
kind of knowledge may be represented with a probability distribution on b, known as the prior
distribution: IP(b).

Given this knowledge, we can use Bayes' rule to turn the likelihood into the inverse conditional
probability, and we can then maximize that:

b̂MAP(~m) = arg max
b

IP(b|~m)

= arg max
b

IP(~m|b)IP(b)/IP(~m)

= arg max
b

IP(~m|b)IP(b)

In the last step, we dropped the denominator from the expression because it does not depend
on b, and thus has no in�uence on the maximum. This estimator is known as the maximum

aposteriori (MAP) estimator.
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Finally, we might want to augment the problem by including some sort of cost function (also
called a �loss� function) that describes how much penalty is incurred by making each particular
error. In general, this is a function of both the true value and the estimated value: L(b, b̂). A
Bayesian estimator attempts to minimize the average (expected) loss:

b̂Bayes(~m) = arg min
b̂

IEb[L(b, b̂)|~m]

= arg min
b̂

∫
b
L(b, b̂)IP(b|~m)

[Ex: Gaussian linear case. Note that as the number of measurements increases, the estimate
gets closer and closer to the ML estimate. ].

A special case of this estimator is the Bayes Least Squares (BLS) estimator, in which the
loss function is just squared error:

b̂BLS(~m) = arg min
b̂

∫
b
(b− b̂)2IP(b|~m)

=
∫

b
bIP(b|~m)q = IEb[b|~m]

where the second line is achieved by di�erentiating the �rst line, setting the result equal to zero,
and solving for b̂. That is, the BLS estimator is simply the conditional mean of the parameter
given the data!

Note that in the Gaussian linear case studied above, the BLS is identical to the MAP estimator,
since the peak of a Gaussian distribution is the same as the mean. But for non-Gaussian
posterior densities, the BLS and MAP are often di�erent.

3 Statistical Decision Theory

The previous section described the problem of estimating the value of some unknown quantity.
This is an instance of a more general problem of making a decision based on a set of uncertain
measurements. In general, we have some unknown quantity like b relevant to the decision, and
a set of measurements ~m that bear on b, producing a posterior distribution IP(b|~m). Finally, we
have some set or range of possible decisions d, and a loss function L(b, d) measuring the cost of
each decision for each possible true value of b.

Bayesian statistical decision theory simply asserts that we should choose the d that minimizes
the expected loss: arg mind IEb[L(b, d)| ~m], where the expectation is according to the posterior
distribution IP(b|~m). The estimation problem can be viewed as a particular subcase of this
problem, in which the decisions d are candidate estimates b̂, and the decision is which estimate
to produce. But more generally, the same statistical framwork applies to many other sorts of
decisions such as whether to buy health insurance or where to aim a missile. In estimation, the
MAP estimator follows from this strategy if all errors are equally costly (L(b, d) = 0 for b = d;
1 ow) and the ML estimator arises when, additionally, the prior is �at, so that the likelihood
function is proportional to the conditional distribution: IP(~m|b) ∝ IP(b|~m).
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3.1 Signal detection: the ideal observer

In perceptual psychology, a restricted estimation/decision problem, known as Signal Detection
Theory has been used to describe the process by which observers detect stimuli in experiments.
This is a particularly simple situation in which formally to examine the tradeo�s involved in
decision-making, and we consider the ideal decision theoretic solution before considering how
the framework can be used to characterize the behavior of experimental subjects.

Here, we assume that the unknown variable b can take only two possible values, which we
will write S and N (for �signal present� and �not present�). We further, usually, assume that
the measurement distributions, conditional on a signal being present or absent, IP(~m|S) and
IP(~m|N), are Gaussian random variables with means µS and µN , respectively, and variances σS

and σN . Finally, we often further assume that σS = σN and µN = 0; the idea being that the
observation is the same (Gaussian noise) either in the presence or absence of a signal of constant
magnitude. The observer's goal is to observe a measurement, and decide whether the signal was
present (”S”), or not (”N”).

Figure 5: Signal detection
(modi�ed from David Heeger):
Distributions of measurements
and possible outcomes.

:

Note that since the measurement distributions overlap, it will
not be possible to respond with 100% accuracy; instead, an
observer can only shift her errors between di�erent categories.
There are four possible outcomes of a trial (FIgure 5: in the
presence of a signal, the subject can either respond �S� (a hit),
or �N� (amiss), and in the presence of no signal, she may again
respond �S� (a false alarm, FA) or �N� (a correct rejection,
CR). A loss function therefore assigns a cost to each of these
events (and it su�ces to assign nonzero cost only to the two
types of errors, miss and FA).

Since there are only two possible values for b, for any particu-
lar measurement, it is convenient to compare them using the
likelihood ratio

LR =
IP(m|S)
IP(m|N)

. A set of decision rules of particular importance are those
obtained by thresholding this quantity: ie, for some threshold
θ, respond �S� if LR > θ and �N� otherwise. Larger θs are more conservative: they increase
correct rejections at the expense of also increasing misses. Clearly, the maximum likelihood
estimate of b takes this form, for θML = 1, so that the subject responds according to whichever
likelihood is larger. Additionally, it is easy to show that the MAP estimate (choose whichever
response has higher posterior probability) corresponds to

θMAP =
IP(N)
IP(S)

. That is, the threshold is corrected by the ratio of prior probabilities of the two events, and
becomes more conservative if null events are more common. Finally, the full Bayesian estimator
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is

θB =
IP(N)
IP(S)

· L(FA)− L(CR)
L(MISS)− L(HIT )

which minimizes expected loss and is more conservative if false alarms are costly relative to
misses.

Note that in the traditional equal-variance case, when σS = σN , the likelihood ratio is a mono-
tonic function of the measurement m, so these rules all simply correspond to thresholds on the
measurement itself. For unequal variances, however, this is no longer the case: the LR is non-
monotic in the measurement, so a single threshold on the LR corresponds to multiple thresholds
on the measurement.

3.2 The laboratory observer

In short, statistical decision theory asserts that how an observer should ideally trade o� di�erent
sorts of errors in a detection problem depends on how costly they are relative to each other, and
uses the tools of statistical inference to estimate the expected cost of di�erent choices. Signal
detection theory has also been used as a framework for characterizing the behavior of subjects
in psychophysical experiments, in which case their subjective loss functions or what threshold
they might adopt are not known. Indeed, researchers in perception are often interested in the
perceptual characteristics of, say, the visual system (e.g., how many photons does one need to
detect a �ash of light?) unconfounded by the various biases or motivations that enter into the
decision. Signal detection theory is a framework for understanding how the properties of the
sensory system (i.e., in this model, the means and variances of the signals being detected) a�ect
the observable decision behavior.

Figure 6: d' and the ROC curve
(from David Heeger)

A useful one-variable summary of the perceptual aspects of a
detection problem is:

d′ =
µS − µN

σ

, that is, the distance between the signal and no-signal means,
measured in units of the standard deviation of the noise. Eas-
ier detection problems (those with more signal, or less noise)
have higher d′.

One tool that suggests how to measure d′ without making any
assumptions about θ is the so-called Receiver Operating

Characteristic (ROC) curve. An ROC curve (Figure 6) is a
plot of the fraction of hits against that of false alarms. Any
particular threshold in any particular decision problem corresponds to a point in the ROC
graph (a hit rate, and a false alarm rate), as we increase θ, we normally decrease both hits and
false alarms. For a particular decision problem � that is, a particular d′ � the range of all
possible θs sweeps out a curve across the chart, from the upper right hand corner (100% hits and
false alarms) to the lower left (100% misses and correct rejections). Easier detection problems
de�ne curves closer to the upper-left hand corner (100% hits, no false alarms), and farther from
the main diagonal (along which hits and false alarms are equal). Indeed, the area under the
ROC curve is a functon of d′. All this suggests two experimental approaches for measuring
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d′ independent from the decision threshold θ: one is simply to measure the proportion of hits
and false alarms across a number of detection trials, and identify the d′on whose ROC curve
this performance lies. Another approach (which is less closely bound to the speci�c form of the
noise assumed) is to induce the subject to adopt many di�erent θs, for instance by changing
the instructions, measure a point on the ROC curve for each, and use these to approximate the
area under the curve.
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