Linear shift-invariant (LSI)
systems

® Linearity (covered previously):

“linear combination in, linear combination out”

® Shift-invariance (new):

“shifted vector in, shifted vector out”

® Some examples  [on board]

LSI system
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(rewrite as weighted
sum of impulses)
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LSI systems are characterized by their “impulse response”
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Convolution

® Matrix description
® boundaries: zero-padded, reflected, circular

® Examples: impulse, delay, average, difference
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[figure c/o Castleman]




Discrete Sinusoids

(» “frequency” (cycles/vectorLength)

example : k =2

cos(wn), w = 2rk/N 0"“I"luI“if"jj”'j:"i:’HJI"I["
L» “frequency” g % " 2
(radians/sample)

example : A = 1.6, ¢ = 67/32

1 \’ ‘

1 “T

More generally: A cos(wn — ¢) or it ’ S
“amplitude” 0 10 20 30

“phase” (radians)

Shifting Sinusoids

A cos(wn — @) = A cos(¢) cos(wn) + Asin(¢) sin(wn)

fixed cos/sin vectors:
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A shifted sinusoidal vector can be written as a weighted sum
of two fixed sinusoidal vectors!




Shifting Sinusoids

A cos(wn — ¢) = A cos(¢) cos(wn) + Asin(¢) sin(wn)

fixed cos/sin vectors:

A=16, ¢=2r6/12 X
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A shifted sinusoidal vector can be written as a weighted sum
of two fixed sinusoidal vectors!

Sinusoids & LSI

z(n) = cos(wn)

y(n) = Z r(m) cos (w(n —m)) (convolution)




Sinusoids & LSI

z(n) = cos(wn)

y(n) = Y _r(m)cos(w(n—m)) (convolution)
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Sinusoids & LSI

z(n) = cos(wn)

y(n) = (convolutlon)
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Sinusoids & LSI

z(n) = cos(wn)

y(n)

Z r(m) cos (w(n —m))

(convolution)

os(wn) in(wn)

cr(w)

cos(wn) +

Sr(w) sin(wn)

A, (w) cos(pr(w)) cos(wn) + Ap(w)sin(o,(w)) sin(wn)

sp(w)

Sinusoids & LSI

z(n) = cos(wn)

y(n)

Z r(m) cos (w(n —m))

m

Zr(m) cos(wm) cos(wn) + Zr(m) sin(wm) sin(wn)

m

cr(w)

m

cos(wn) +

sr(w) sin(wn)

A, (w) cos(¢r(w)) cos(wn) + A,(w)sin(¢,(w)) sin(wn)

A (w) cos(wn — ¢ (w))

e

“Sinusoid in, sinusoid out”
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Discrete Fourier transform (DFT)

® Construct an orthogonal matrix of sin/cos pairs,
at frequency multiples of 27 /N radians/sample,
18 2mk/ N dor bie=0,1:2, ose N/ 2

® For k=0 and k = N/2, only need the cosine
part of the pair

® When we transform a vector using this matrix,
think of output as paired coordinates

® Common to plot these pairs as amplitude/phase

[all details on board]

The Fourier family

signal domain

continuous

discrete

continuous I Fourier transform

discrete-time Fourier transform

frequency
domain

discrete I

Fourier series

discrete Fourier transform

you are here

The “fast Fourier transform” (FFT) is a computationally
efficient implementation of the DFT (runs in NlogN time,

instead of NA2).




Sinusoids & LSI

z(n) = cos(wn)

y(n) = Zr(m)cos(w(n—m))

m

= cr(w) cos(wn) + Sr(w) sin(wn)

= A, (w)cos(¢,(w))cos(wn) + A,(w)sin(¢p,(w))sin(wn)

= A, (w)cos(wn — ¢,(w))

NOTE: Change in amplitude and phase come from
Fourier transform of the impulse response!

Fourier & LSI
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Fourier & LSI
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note: only 3 (of many) components shown

Fourier & LSI

note: only 3 (of many) components shown




Fourier & LSI
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LSI systems are characterized by their frequency response,
specified by the Fourier Transform of their impulse response

Complex exponentials:
“bundling” sine and cosine

e’ = cos(f) + isin(6)
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Complex exponentials:
“bundling” sine and cosine

'’ = cos(6) + isin(6)

eiwn L A,(u)) e'i(wn.—(p,w(w)) A,(u)) e—ic'),w(w) eiwn
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F.T. of impulse response!

Complex exponentials:
“bundling” sine and cosine

e’ = cos(f) + isin(6)
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The “convolution theorem”

l

T

convolve with 7

The “convolution theorem”

l

convolve with 7

pointwise multiply by 7
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The “convolution theorem”

T mae A7

convolve with 7

Fourier Transform
WIOJSURI], IOLINO]

pointwise multiply by 7

In matrix form: .7 = FRFTz
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Recap

® Linear system
=> defined by superposition

=> characterized by a matrix

® [Linear Shift-invariant (LSI) system
=> defined by superposition and shift-invariance
=> characterized by impulse response

=> alternatively, characterized by frequency response (the
Fourier Transform of the impulse response!)




Discrete Fourier transform
(with complex numbers)

N—-1
Fk' — E rne—zwkn

n=0

N-1
o o TWEN ;
Tn = E T " (inverse)
k=0
h 21k
where wrp = ——
N

Visualizing the (discrete)
Fourier transform

® Typically, plot Amplitude (and possibly
Phase, on a separate graph), instead of real/
imaginary parts

® Two conventional choices for frequency axis:
- Plot frequencies from k=0 to k=N/2
- Plot frequencies from k=-N/2 to N/2-1
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Dealing with DFT in Matlab...

e = cos(wn) + i sin(wn)

Matlab examples, N=32 (note indexing and amplitudes):
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Some examples

constant

sinusoid

impulse

Gaussian - “lowpass”

DoG (difference of 2 Gaussians) - “bandpass”

Gabor (Gaussian windowed sinusoid) - “bandpass”




Responsivity
(impulses per second)
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Enroth-Cugell and Robson (1984)




