Linear shift-invariant (LSI) systems

- Linearity (covered previously):
 "linear combination in, linear combination out"
- Shift-invariance (new):
 "shifted vector in, shifted vector out"
- Some examples [on board]

LSI system

(rewrite as weighted sum of impulses)

Convolution

- Matrix description
- boundaries: zero-padded, reflected, circular
- Examples: impulse, delay, average, difference

2D convolution

• sliding window

[figure c/o Castleman]

Discrete Sinusoids "frequency" (cycles/vectorLength) example: k=2of the firequency (radians/sample) example: $A=1.6, \phi=6\pi/32$ More generally: $A\cos(\omega n-\phi)$ where A=1.6 is a sinusoid of the firequency (radians) where A=1.6 is a sinusoid of the firequency (radians)

Shifting Sinusoids

$$A\cos(\omega n - \phi) = A\cos(\phi)\cos(\omega n) + A\sin(\phi)\sin(\omega n)$$

fixed cos/sin vectors:

A *shifted* sinusoidal vector can be written as a weighted sum of two *fixed* sinusoidal vectors!

Shifting Sinusoids

$$A\cos(\omega n - \phi) = A\cos(\phi)\cos(\omega n) + A\sin(\phi)\sin(\omega n)$$

 $A = 1.6, \ \phi = 2\pi 6/12$

fixed cos/sin vectors:

A *shifted* sinusoidal vector can be written as a weighted sum of two *fixed* sinusoidal vectors!

Sinusoids & LSI

$$x(n) = \cos(\omega n)$$

$$y(n) = \sum_{m} r(m) \cos(\omega(n-m))$$
 (convolution)

Sinusoids & LSI

$$x(n) = \cos(\omega n)$$

 $y(n) = \sum_{m} r(m) \cos(\omega(n-m))$ (convolution)
 $= \sum_{m} r(m) \cos(\omega m) \cos(\omega n) + \sum_{m} r(m) \sin(\omega m) \sin(\omega n)$

Sinusoids & LSI

$$x(n) = \cos(\omega n)$$

$$y(n) = \sum_{m} r(m) \cos(\omega(n-m)) \qquad \text{(convolution)}$$

$$= \sum_{m} r(m) \cos(\omega m) \cos(\omega n) + \sum_{m} r(m) \sin(\omega m) \sin(\omega n)$$

$$= c_r(\omega) \cos(\omega n) + c_r(\omega) \sin(\omega n)$$

Sinusoids & LSI

$$x(n) = \cos(\omega n)$$

$$y(n) = \sum_{m} r(m) \cos(\omega(n-m)) \qquad \text{(convolution)}$$

$$= \sum_{m} r(m) \cos(\omega m) \cos(\omega n) + \sum_{m} r(m) \sin(\omega m) \sin(\omega n)$$

$$= c_r(\omega) \cos(\omega n) + s_r(\omega) \sin(\omega n)$$

$$= A_r(\omega) \cos(\phi_r(\omega)) \cos(\omega n) + A_r(\omega) \sin(\phi_r(\omega)) \sin(\omega n)$$

$$s_r(\omega) \qquad s_r(\omega) \qquad c_r(\omega)$$

Sinusoids & LSI

"Sinusoid in, sinusoid out"

Discrete Fourier transform (DFT)

- Construct an orthogonal matrix of sin/cos pairs, at frequency multiples of $2\pi/N$ radians/sample, i.e., $2\pi k/N$, for $k=0,1,2,\ldots N/2$
- For k = 0 and k = N/2, only need the cosine part of the pair
- When we transform a vector using this matrix, think of output as paired coordinates
- Common to plot these pairs as amplitude/phase

[all details on board]

The Fourier family

signal domain

frequency		continuous	discrete
	continuous	Fourier transform	discrete-time Fourier transform
	discrete	Fourier series	discrete Fourier transform

you are here

The "fast Fourier transform" (FFT) is a computationally efficient implementation of the DFT (runs in NlogN time, instead of N^2).

Sinusoids & LSI

$$x(n) = \cos(\omega n)$$

$$y(n) = \sum_{m} r(m) \cos(\omega(n-m))$$

$$= \left(\sum_{m} r(m) \cos(\omega m) \cos(\omega n) + \left(\sum_{m} r(m) \sin(\omega m) \sin(\omega n)\right)\right)$$

$$= c_r(\omega) \cos(\omega n) + s_r(\omega) \sin(\omega n)$$

$$= A_r(\omega) \cos(\phi_r(\omega)) \cos(\omega n) + A_r(\omega) \sin(\phi_r(\omega)) \sin(\omega n)$$

$$= A_r(\omega) \cos(\omega n - \phi_r(\omega))$$

NOTE: Change in amplitude and phase come from Fourier transform of the impulse response!

Fourier & LSI

Fourier & LSI

note: only 3 (of many) components shown

Fourier & LSI

note: only 3 (of many) components shown

Fourier & LSI

note: only 3 (of many) components shown

 \vec{y}

LSI systems are characterized by their *frequency response*, specified by the Fourier Transform of their impulse response

Complex exponentials: "bundling" sine and cosine

$$e^{i\theta} = \cos(\theta) + i\sin(\theta)$$

$$e^{i\omega n}$$
 \longrightarrow $A_r(\omega) e^{i(\omega n - \phi_r(\omega))} = A_r(\omega) e^{-i\phi_r(\omega)} e^{i\omega n}$
 $= \tilde{r}(\omega) e^{i\omega n}$

Complex exponentials: "bundling" sine and cosine

$$e^{i\theta} = \cos(\theta) + i\sin(\theta)$$

$$e^{i\omega n}$$
 \longrightarrow $A_r(\omega) e^{i(\omega n - \phi_r(\omega))} = A_r(\omega) e^{-i\phi_r(\omega)} e^{i\omega n} = \tilde{r}(\omega) e^{i\omega n}$

F.T. of impulse response!

Complex exponentials: "bundling" sine and cosine

$$e^{i\theta} = \cos(\theta) + i\sin(\theta)$$

$$e^{i\omega n}$$
 \longrightarrow $A_r(\omega) e^{i(\omega n - \phi_r(\omega))} = A_r(\omega) e^{-i\phi_r(\omega)} e^{i\omega n}$
 $= \tilde{r}(\omega) e^{i\omega n}$

$$\begin{array}{c|c} & & \\ & &$$

The "convolution theorem" \vec{x} \vec{y} \vec{r} \vec{r}

In matrix form: $L\vec{x} = F\tilde{R}F^T\vec{x}$

Recap

- Linear system
 - => defined by superposition
 - => characterized by a matrix
- Linear Shift-invariant (LSI) system
 - => defined by superposition and shift-invariance
 - => characterized by impulse response
 - => alternatively, characterized by frequency response (the Fourier Transform of the impulse response!)

Discrete Fourier transform (with complex numbers)

$$ilde{r}_k = \sum_{n=0}^{N-1} r_n e^{-i\omega_k n}$$

$$r_n = \sum_{k=0}^{N-1} ilde{r}_k \ e^{i\omega_k n} \qquad \qquad \text{(inverse)}$$

where
$$\omega_k = \frac{2\pi k}{N}$$

Visualizing the (discrete) Fourier transform

- Typically, plot Amplitude (and possibly Phase, on a separate graph), instead of real/ imaginary parts
- Two conventional choices for frequency axis:
 - Plot frequencies from k=0 to k=N/2
 - Plot frequencies from k=-N/2 to N/2-1

Dealing with DFT in Matlab...

$$e^{i\omega n} = \cos(\omega n) + i\sin(\omega n)$$

$$\cos(\omega n) = \frac{1}{2}(e^{i\omega n} + e^{-i\omega n}) \qquad \sin(\omega n) = \frac{-i}{2}(e^{i\omega n} - e^{-i\omega n})$$

Matlab examples, N=32 (note indexing and amplitudes):

Some examples

- constant
- sinusoid
- impulse
- Gaussian "lowpass"
- DoG (difference of 2 Gaussians) "bandpass"
- Gabor (Gaussian windowed sinusoid) "bandpass"

Retinal ganglion cells (1D)

