Instructor: | Eero Simoncelli |
TA: | Brian Lau |
Lectures: | Monday/Wednesday 9-11am, Meyer 813 |
![]() |
Date | Topic | Handouts | Homework |
Sep 4 |
Linear Algebra I: vectors, inner products |
Course Description (pdf) Background Poll (pdf) |
|
Sep 6 |
Special lab session I: intro to matlab
in room 1023 Meyer at 2:30PM |
||
Sep 9 |
Linear Algebra II: linear transforms, matrices |
Linear Algebra (pdf) |
HW 1 (pdf),
due Sep 18 plotVec (m), mtxExamples (mat, or m) |
Sep 11 |
diagonal / orthogonal matrices singular value decomposition |
||
Sep 6 |
Special lab session II: more matlab
in room 1023 Meyer at 3PM |
Matlab primer (pdf) online documentation (html) U. Utah (pdf) UNH (html) |
|
Sep 16 | No class (Yom Kippur) | ||
Sep 18 |
Hodgkin-Huxley Model [Shapley] | ||
Sep 23 |
Cable Equations [Tranchina] | ||
Sep 25 |
Examples: color matching & Trichromacy |
HW 2 (pdf),
due Oct 2 colmatch (mat), |
|
Sep 30 |
Regression I: least squares | Least Squares (pdf) | |
Oct 2 |
Regression II: total least squares, PCA |
HW 3 (pdf),
due Oct 9 regress1 (mat), regress2 (mat), outlierData (mat) |
|
Oct 7 |
Regression III: Linear & quadratic constraints | ||
Oct 9 | Classification, Fischer linear discrim. | ||
Oct 14 | Linear shift-invariant systems | Linear Systems (pdf) |
HW 4 (pdf),
due Oct 21 PCA (mat), constrainedLS (mat), fisherData (mat) |
Oct 16 | Sinusoids & LSI systems | ||
Oct 21 | Fourier Transform | ||
Oct 23 | Convolution Theorem | ||
Oct 28 | Convolution: examples and properties | HW 5 (pdf),
due Nov 4 bandLimitedSigs (mat), cconv2 (m), mkSine (m) |
|
Oct 30 | Sampling, Nyquist Theorem | ||
Nov 2,4 | No Class (Annual Neuroscience meeting) | ||
Nov 11 |
Probability I: Random variables, random vectors, expectations | ||
Nov 13 | Probability II: moments, Gaussians | ||
Nov 18 |
Estimation I: models, experiments, statististics | ||
Nov 20 |
Poisson processes Reverse correlation | Chichilnisky paper on white noise analysis (pdf) |
|
Nov 25 | Estimation II: ML,MAP,Bayes | HW 6 (pdf),
due Dec 4 makeWhiteNoise (m), simulateSNL (m) |
|
Nov 27 | Estimation III: bias/variance, bootstrapping | Efron intro chapter on bootstrapping (hc) |
|
Dec 2 |
Decision theory: Likelihood ratios, prior/loss, threshold rules | ||
Dec 4 |
Signal detection theory: hit/miss/FA/CR, d', ROC, 2AFC | Signal detection theory (hc) | HW 7 (pdf),
due Dec 13 measure (m), neurometricData (mat) |
Dec 9 | Neural decisions [Lau] |
Electronic:
- Linear Algebra Appendix from PDP series, by Michael Jordan. (pdf - 3Mbytes)
- Vilis and Tweed Basic Linear Algebra notes
- Todd Will's Interactive Intro to the SVD
- Sam Roweis' Informal Notes on ...
- Thomas Minka's On-line Glossary of Statistical Pattern Recognition
- Wolfram Research World of Mathematics
- History of various topics in mathematics
Dead Trees:
- Computationa/Theoretical Neuroscience:
Theoretical Neuroscience , by Peter Dayan and Larry Abbott. MIT Press, 2001. (available online to NYU through CogNet)- Linear Algebra / Least Squares:
Linear Algebra and Its Applications, by Gilbert Strang. Academic Press, 1980.- Linear (shift-invariant) Systems
Discrete-time Signal Processing, by Alan Oppenheim and Ron Schafer. Prentice Hall, 1989.- Probability/Statistics:
Probability and Statistics, by Morris DeGroot and Mark Schervish. Addison-Wesley, 2002.- Decision Theory:
Biology: Signal Detection Theory and Psychophysics, by David Green & John Swets. Peninsula Publishing, 1988.
Math: Statistical Decision Theory, by James O. Berger. Springer-Verlag, 1980.
Chapter 2 of Pattern Classification, by Duda, Hart and Storck. Wiley, 2001.- Bootstrap/Resampling:
An Intoduction to the Bootstrap, by Bradley Efron and Robert Tibshirani. Chapman & Hall, 1998.
Resampling Methods: A practical guide to data analysis, by Phillip Good. Birkhäuser, 1999.- Spikes, Neural Coding, Reverse Correlation:
Spikes: Exploring the Neural Code, by Fred Rieke, David Warland, Rob De Ruyter, & Bill Bialek. MIT Press, 1997.
![]() | ||
Revised: 23 September 2003. |
Feedback/comments to: eero AT cns.nyu.edu |
Top of page |