G80.2221, Fall Semester, 2001

Mathematical Tools for Neural Science

Instructor: Eero Simoncelli
TA: Zang (Jenny) Li
Lectures: Monday/Wednesday 9-11am, Meyer 813

Brief Description:

A graduate course covering basic mathematical techniques for analysis and modeling of neural data and neural systems. Topics to include: Linear algebra, least-squares and total-least-squares regression, eigen-analysis and PCA, linear shift-invariant systems, Fourier transforms, sampling, ordinary differential equations, coupled differential equations, basics of estimation and decision theory, hypothesis testing, bootstrapping, models of neural spike generation, white noise analysis.

Schedule / Handouts

Date Topic Handouts Homework
Sep 5 Linear Algebra I:
vector spaces, linear systems
Course Description (pdf)
Background Poll (pdf)
Geometric LinAlg Review (pdf)
 
Sep 10 Linear Algebra II:
linear transforms, matrices, SVD
  HW 1 (pdf), due Sep24/Oct1
plotVec (m), colmatch (mat)
Sep 12 Matlab Intro, in Meyer 157
Rescheduled for 9/19, 5-7pm
Matlab primer (pdf)  
Sep 17 Matrix Inversion
Color Matching
Wandell, ch 4 (hc)  
Sep 19 Hodgkin-Huxley [Rinzel] HH Lecture Notes (hc)  
Sep 24 Cable Equation [Tranchina]   Tranchina HW (hc)
due Oct 8
Sep 26 Color Matching / Trichromacy
Optimization intro
   
Oct 1 Optimization I:
Least Squares Regression
Least Squares (pdf) Rinzel HW (pdf), due Oct 15
ODE descriptions (txt)
Oct 3 Phase Plane Analysis [Rinzel]    
Oct 8 Optimization II:
Total Least Squares
Rayleigh Quotient
   
Oct 10 Optimization III:
Linear/Quadratic Constraints
Fisher Linear Discriminant
  HW 2 (pdf), due Oct 19 (extended)
regress1 (mat), regress2 (mat),
wtdDataSet (mat), outlierData (mat)
Oct 15 Eigenvectors [Li]
Linear shift-invariant systems
Convolution
   
Oct 17 Sinusoids/complex exponentials
Fourier Transform(s)
   
Oct 22 Fourier Transform Family:
details/examples
  HW 3 (pdf), due Oct 31
PCA (mat), constrainedLS (mat),
fisherData (mat), plotVec (m),
cconv2 (m), bandlimitedSigs (mat)
Oct 24 Fourier Transform:
Properties, Convolution theorem
   
Oct 29 Fourier Transform: Examples, LSI charactization    
Oct 31 Fourier Transform:
Sampling Theorem
   
Nov 5 Probability Basics:
densities, marginals, conditionals
Gaussian examples
Linear Systems (HC) HW4 (txt) (due Nov 9)
mkSine (m), mkRamp (m)
Nov 7 Statistical estimation:
Maximum Likelihood.
   
Nov 12/14 BREAK: Society for Neuroscience Meeting    
Nov 19 Estimation II:
MAP, Bayes
Examples
   
Nov 21 Estimation III:
Statistical tests,
Bootstrapping
DRAFT: Probability and Statistics (hc)
Efron Bootstrapping (hc)
HW5 (pdf) (due Dec 3)
mkGaussian (m), blackBox (m)
Nov 26 Bootstrapping example:
Basics of Statistical Decision Theory
   
Nov 28 Signal Detection Theory [Rubin]    
Dec 3 More on ROC
Decisions with Neurons
  HW6 (pdf) (due Dec 17)
Nava's SDT problem (MS-word)
neurometricData (mat), simulateSNL (m),
makeWhiteNoise (m)
Dec 5 BREAK: Neural Information Processing Systems
(NIPS) Meeting
   
Dec 7 Simple neural models:
linear/nonlinear, Poisson
White noise analysis
Chichilnisky article (pdf)  
Dec 10 Reading spike trains
PSTH, JPSTH, Correlograms
Brody article (pdf)  


Additional Resources

Electronic:

Dead Trees:

Revised: 10 December 2001. Feedback/comments to:
eero AT cns.nyu.edu
Top of page