
PSYCH-GA.2211/NEURL-GA.2201 – Fall 2024
Mathematical Tools for Neural and Cognitive Science

Homework 6

Due: 20 Dec 2024
(late homeworks penalized 10% per day)

See the course web site for submission details. For each problem, show your work - if you only
provide the answer, and it is wrong, then there is no way to assign partial credit! And, please don’t
procrastinate until the day before the due date... start now!

1. Fitting a 2AFC psychometric function. In Homework 5 problem 2, you simulated a
psychophysical 2-alternative forced choice (2AFC) discrimination experiment. Here, we’ll
examine the scientific side of the problem: estimating the parameters from simulated data.

(a) Write a function nll = nloglik(mu,sigma,lambda,I,T,B) that returns the negative
log likelihood of parameters mu, sigma, and lambda for data set I,T,B (we’re negating
it because we will be minimizing this function to solve for the optimal parameters).

(b) Use the matlab function fminsearch to estimate the values of mu, sigma, and lambda

that minimize the function nloglik(mu,sigma,lambda,...) for the dataset you gener-
ated in homework 5 problem 2c. Specifically, call simpsych with T=ones(1,7)*100 and
I=1:7 for λ = 0.05, µ = 4, σ = 1.

Two comments: first, the syntax for calling nloglik within fminsearch is a bit odd:
fminsearch(@(x) nloglik(x(1),x(2),x(3),I,T,B), <startpoint>).
Here, the @ notation is used to create a temporary function, with argument x a vector
containing the three variables being optimized (mean, standard deviation and lapse rate).
Second, you’ll need to specify a start point for the search – for this problem, [2,2,.05]
is a reasonable choice. Were the estimates close to the true values used to generate the
data?

(c) A variant of fminsearch, fminunc, also returns the Hessian (the matrix of second deriva-
tives) of the negative log likelihood at the optimal values mu, sigma and lambda. (Note:
fminunc is less robust than fminsearch, and if the optimizer strays too far from the true
values, there may be numerical problems due to overflow of the likelihood; in this case,
try a different starting point.) As discussed in class, the inverse of the Hessian provides
an estimate of the covariance matrix of the parameter estimates. Use this to determine
95% confidence intervals (mean ±1.96 standard deviations) for each parameter. Do the
true parameter values fall within these confidence intervals?

(d) Produce a second set of confidence intervals for the parameters using a bootstrap method.
For each of the 7 intensities, resample 100 trials (i.e., responses that the red spot is
brighter or darker) from the 100 trials of that intensity in the original data, with replace-
ment. Refit the model to the resampled data using fminsearch. Plot the histograms
(function hist) of mu, sigma and lambda estimates obtained over 500 such resampled
datasets, and define your confidence intervals as the region between the 2.5th and 97.5th
percentiles of these distributions. How well do these values agree with those from the
previous part?
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2. Reverse Correlation. From the course web page, download this function

[spikes, stimuli] = runGaussNoiseExpt(kernel, duration)

that simulates a white noise (reverse correlation) experiment. The kernel is a spatial weight-
ing vector, and duration specifies the total number of random stimuli that will be shown.
The function returns spikes, a binary vector indicating which stimuli produced spikes, and
stimuli, a matrix whose rows contain the stimuli.

(a) Generate a 100-sample response vector by running the function on the spatial kernel:
[1 2 1; 2 4 2; 1 2 1]/6. This is a matrix, which you’ll need to stretch out into a
column vector (i.e., kernel(:)) before passing it into the function. Note that this kernel
is unit-norm. Plot (on two subplots of the same figure) the linear filter response to the
stimuli (you should be able to compute this with a single matrix multiplication!) and the
spike train, both as functions of time. Do you see a relationship between these? Display
a 2D scatter plot of the raw stimulus intensities at positions 1 and 6, which should look
like samples of a 2D Gaussian. On top of this (use hold on), plot in red only the stimulus
intensities that produced spikes. Use axis equal to use equally-scaled axes. Where in
this 2D stimulus space do the spikes occur? Does this match your expectations?

(b) Now compute the spike-triggered average (STA) for the simulated data from this “ex-
periment”. Rescale it to have unit norm, reshape it into a matrix, and display it as
a grayscale image. Display the true kernel next to it (use subplot). How similar is
the STA to the true kernel? Characterize the error of the STA, as a function of the
duration of the experiment. For durations 100, 400, 1600, 6400, 25600, 102400, run the
experiment 100 times, compute the mean STA across these 100 runs, and subtract this
from the true kernel, and compute the average of this difference kernel (the estimation
bias). Also, subtract the computed mean from the 100 STAs, and compute the average
squared error over these (the estimation variance). Plot the bias and square root of the
variance as functions of the duration – you might want to look at a log-log plot (matlab
has a function loglog). What do you conclude about how the bias and variance behave,
as a function of the amount of data?

(c) Repeat the STA estimation exercise, but use the function runBinNoiseExpt, which uses
binary noise instead of Gaussian noise. Compare the bias and variance plots to those
for the Gaussian case. How do they differ? Why?

(d) Estimate the nonlinearity of the response. Take the stimuli, spikes, and STA from a
single run of the Gaussian noise experiment with duration 6400, project the stimuli onto
the STA. Sort these projections from highest to lowest (using matlab’s sort function)
and re-order the spike vector to maintain correspondence (the sort function will give
you the indices of the sorted values). Now collect the mean projection values, and the
mean spike count, into bins containing each consecutive group of 200 indices (this should
result in two vectors of length 32), and plot these against each other. You should see an
estimate of the spiking nonlinearity. On the same graph, plot the spike responses (zeros
and ones) as a function of the projection of their corresponding stimuli onto the STA.

(e) Replot this nonlinearity with error bars, computed by bootstrapping. Draw a set of
6400 random integer indices in the range [1:6400], and use these to resample a set
of projection/spike pairs, and recompute the nonlinearity for this bootstrap-resampled
data. Unlike your previous estimates of the nonlinearity, you’ll need to create fixed
bins over which you’ll average the projected values and spikes, which will allow you to
compare across multiple bootstrap samples. Do this 100 times, to get 100 estimated
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nonlinearities. Plot the mean nonlinearity, and standard deviation, as points with error
bars (use the matlab function errorbar).

3. Classification (decision) in a 2-dimensional space. Load the file fisherData.mat into
your MATLAB environment. The file contains two data matrices, data1 and data2, whose
rows contain hypothetical normalized responses of 2 mouse auditory neurons to different
stimuli – The first matrix contains responses to dogs barking, and the second are responses to
cats meowing. You would like to know whether the responses of these two neurons could be
used by the mouse to differentate the two types of sound. We’ll implement three classifiers.

(a) First consider the linear discriminant corresponding to the difference in means of the
two data sets (the “prototype classifier”). Write the math to show that this solution
is the Maximum Likelihood classifier under the assumption that the data are drawn
from Gaussian distributions with different means and identity covariance (or any scalar
multiple of the identity matrix). Visualize the solution by generating a binary image
showing the classification output. Specifically, use meshgrid to generate X and Y coor-
dinate images covering a region that extends a bit beyond the range of the data, create
images of two Gaussians (with mean matching the corresponding data sets and identity
covariance), and then calculate an image of the binary classifier by comparing the two
Gaussian images. Display the image using image (make sure to provide x and y coordi-
nates), and use hold to scatter plot the data on top of the image. Now compute the
discriminant vector (compute the difference of the means of each data set, and normalize
to unit length). Scatterplot the data (using different colors for the two data sets), and
plot the discriminant vector and the decision boundary on top of this. What fraction of
the points are correctly classified by this classifier?

Project the two data sets onto this discriminant, and plot histograms of each (use hist,
and put them in the same plot by using hold on and hold off). How well separated
are the two distributions?

(b) Now use Fisher’s Linear Discriminant, which maximizes the average squared between-
class mean distance, while minimizing the sum of within-class squared distances (see
Notes on regression). Write the math to show that this classifier is the ML solution
when the data are drawn from Gaussian distributions with different means, but the
same covariance matrix (which need not be a multiple of the identity!). Estimate the
common covariance, ΣData, by averaging together the sample covariances of the two data
matrices. Repeat the plotting exercises of part (a) to visualize the solution. Again, what
fraction of the points are correctly classified by this classifier?

(c) Fisher’s discriminant suffers when there’s not enough data to estimate the covariance
matrices. Compute the ridge-regularized Fisher’s discriminant, by estimating the covari-
ance matrix as ΣEstimated = (1 − λ)ΣData + λI, where ΣData is the sample covariance
matrix of the data (as in part (b)), and I is the identity matrix. The parameter λ controls
the regularization, allowing the solution to transition between the prototype classifier
(λ = 1) and Fisher’s Discriminant (λ = 0). Test the classifier for values λ = [0 : 0.05 : 1]
using 95%-5% cross-validation (i.e., 100 times, sample without replacement 95% of the
data from each class, and test classification performance on the remaining 5%). Plot
your cross-validated test-set performance (with error bars) as a function of λ and state
which λ you think is best.


