
PSYCH-GA.2211/NEURL-GA.2201 – Fall 2024
Mathematical Tools for Neural and Cognitive Science

Homework 3

Due: 29 Oct 2024
(late homeworks penalized 10% per day)

See the course web site for submission details. Reminder: rather than using the functions pinv()
and norm(), use the linear algebra tools we learned in class. Do yourself a favor, and don’t wait
until the day before the due date... start now !

1. LSI system characterization. You are trying to experimentally characterize three auditory
neurons, in terms of their responses to sounds. For purposes of this problem, the responses of
these neurons are embodied in compiled matlab functions unknownSystemX.p with X=1, 2,
3. If you are using Python, import the unknown systems module from the obfuscated Python
file. Each takes an input column vector of length N = 64 whose elements represent sound
pressure over time. In Python the response of each is a column vector (of the same length)
representing the mean spike count over time. For each neuron,

(a) “Kick the tires” by measuring the response to an impulse in the first position of an input
vector. Check that the system is consistent with shift-invariance by comparing this to
the response to an impulse at positions n = 2, 4, 8. Check that the system is consistent
with linearity by testing whether the response to a sum of any two of these impulses is
equal to the sum of their individual responses. Also examine respones to impulses at
different n to determine how the system handles inputs near the boundary (i.e., whether
the system does circular boundary-handling). Describe your findings.

(b) If the previous tests succeeded, examine the response of the system to sinusoids with
frequencies {2π/N, 4π/N, 8π/N, 16π/N}, and random phases, and check whether the
outputs are sinusoids of the same frequency (i.e., verify that the output vector lies
completely in the subspace containing all the sinusoids of that frequency). [Note: make
all elements of the the input stimuli positive, by adding one to each sinusoid. The
responses will then also be positive (mean spike counts).]

(c) If the previous tests succeeded, verify that the change in amplitude and phase from input
to output is predicted by the amplitude (abs) and phase (angle) of the corresponding
terms of the Fourier transform of the impulse response. If not, explain which property
(linearity, or shift-invariance, or both) seems to be violated by the system. If so, does the
combination of all of your tests guarantee that the system is linear and shift-invariant?
What set of tests would provide such a guarantee?

2. Retinal and LGN neurons. The response properties of ganglion cells in the retina or
neurons in the lateral geniculate nucleus (LGN) are often described using linear filters. We’ll
examine a one-dimensional cross-section of a common choice, known as the difference-of-
Gaussians (or DoG) filter.

(a) Create a one-dimensional linear filter that is a difference of two Gaussians, exp
(
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(each normalized to sum to 1), and with standard deviations σ = 1.5 and σ = 3.5
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samples. The filter should contain 15 samples, with both Gaussians centered on the
middle (8th) sample. Plot the filter to verify that it looks like what you’d expect. Plot
the amplitude of the Fourier transform of this filter, sampled at 64 locations (MATLAB’s
fft function takes an optional additional argument). What kind of filter is this? Why
does it have this shape, and how is the shape related to the choice of parameters (σ’s)?
Specifically, how does the Fourier amplitude change if you alter each of these parameters?

(b) If you were to convolve this filter with sinusoids of different frequencies, which of them
would produce a response with the largest amplitude? Obtain this answer by reasoning
about the equation defining the filter (above), and also by finding the maximum of the
computed Fourier amplitudes (using the max function), and verify that the answers are
the same. Compute the period of this sinusoid, measured in units of sample spacing
(hint: this is the inverse of its frequency, in cycles/sample), and verify by eye that this is
roughly matched to the oscillations in the graph of the filter itself. Which two sinusoids
would produce responses with about 25% of this maximal amplitude?

(c) Create three unit-amplitude 64-sample sinusoidal signals at the three frequencies (low,
mid, high) that you found in part (b). Convolve the filter with each, and verify that
the amplitude of the response is approximately consistent with the answers you gave in
part (b). (hint: to estimate amplitude, you’ll either need to project the response onto
sine and cosine of the appropriate frequency, or compute the DFT of the response and
measure the amplitude at the appropriate frequency).

(d) Verify the convolution theorem. Apply the Fourier transform to each of your three
stimuli. Multiply each by the Fourier transform of the Gabor filter. Inverse Fourier
transform the results and verify that the imaginary part is zero, and the real part is
equal to the result you obtain from the convolution.

3. Deconvolution of the Haemodynamic Response. Neuronal activity causes local changes
in deoxyhemoglobin concentration in the blood, which can be measured using functional mag-
netic resonance imaging (fMRI). One drawback of fMRI is that the haemodynamic response
(blood flow in response to neural activity) is much slower than the underlying neural re-
sponses. We can model the delay and spread of the measurements relative to the neural
signals using a linear shift-invariant system:

r(n) =
∑
k

x(n− k)h(k), (1)

where x(n) is an input signal delivered over time (for example, a sequence of light intensities),
h(k) is the haemodynamic response to a single light flash at time k = 0 (i.e., the impulse
response of the MRI measurement), and r(n) is the MRI response to the full input signal.

In the file hrfDeconv.mat, you will find a response vector r and an input vector x containing
a sequence of impulses (indicating flashes of light). Your goal is to estimate the HRF, h, from
the data. Each of these signals are sampled at 1 Hz. Plot vectors r and x versus time to get
a sense for the data. Use the stem command (or plt.stem in Python) for x, and label the
x-axis.

(a) Convolution is linear, and thus we can re-write the equation above as a matrix multipli-
cation, r = Xh, where h is a vector of length M , N is the length of the input x, and X
is an [N +M − 1]×M matrix. Write a matlab function createConvMat, that takes as
arguments an input vector x and M (the dimensionality of h) and generates a matrix X
such that the response r = Xh is as defined in Eq. (1) for any h. Verify that the matrix
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generated by your function produces the same response as Matlab’s conv function when
applied to a few random h vectors of length M = 15. Visualize the matrix X as an
image (evaluate imagesc(X) in MATLAB or plt.imshow in Python), and describe its
structure.

(b) Now, given the X generated by your function for M = 15, solve for h by formulating a
least-squares regression problem:

hopt = argmin
h

||r −Xh||2

Plot hopt as a function of time (label your x-axis, including units). How would you
describe it? How long does it last?

(c) It’s often easier to understand an LSI system by viewing it in the frequency domain.
Plot the power-spectrum of the HRF (i.e. |F(h)|2, where F(h) is the Fourier transform
of the HRF). Plot this with the zero frequency (DC) in the middle (in Matlab you can
use a built-in function called fftshift), and label the x axis, in Hz. Based on this plot,
what kind of filter is the HRF? Specifically, which frequencies does it allow to pass, and
which does it block?

(d) Use the convolution theorem to now find hopt by working in the fourier domain. You
will need to use the matlab functions fft and ifft. Remember to be careful about how
many samples you choose to have in your fft. Based on the operations you have done,
what can you say about when this method will fail? On the same graph, plot the HRF
impulse response you recovered from parts (b) and (d).

4. Pyramid representations and aliasing. In 1983, Peter Burt and Ted Adelson introduced
two “multiscale” representations of images: the Gaussian and the Laplacian pyramid. This
provided an efficient method for representing an image in multiple frequency bands. For lower
frequencies, subsampling was imposed so that you used fewer numbers to represent smoothly
varying, low-frequency images. Here, you will work with a one-dimensional version.

(a) Create a 128-sample signal g0 (i.e., a vector with 128 entries) that is the sum of three
sine waves that have frequencies of 3, 13, and 60 cycles per 128 samples and amplitudes
equal to .2, .3 and 1, respectively. Subsample this signal to create vector gs by throwing
away half the samples, maintaining the samples at positions 0, 2, · · ·, resulting in a vector
of length 64. Plot g0 and s on the same axes using a line graph for each vector (i.e.,
connect the samples), where the samples from s are plotted in the same positions as
where they came from (0, 2, · · ·). Explain what you see.

(b) Write a function downsample that takes a vector as input, convolves it with kernel[
1
16

1
4
3
8
1
4

1
16

]
, where the impulse response is symmetric, so that the convolution output at

sample j applies the central value 3
8 to the input sample at the same position j. The

result of this convolution is then subsampled (usually called “down-sampling”), throwing
away every other sample (keeping the samples at positions 0, 2, · · ·), resulting in a vector
with one-half the length of the input. Compute g1 as the down-sampled version of g0.
Add this blurred-and-subsampled vector as a curve on the above plot. Explain how g1
differs from s and from g0.

(c) Next, rather than plotting the subsampled vector along with the original signal, let’s try
to approximate the input vector as best we can from the subsampled one. The operation
is called “up-sampling”, that is, to take a vector and create a new vector with twice as
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many samples using interpolation. Write a function upsample that is given an input
vector and (i) first adds samples with value zero between every sample of gi (plus an
extra one at the end), and then (ii) blurs the resulting vector using the same kernel
above that we used when down-sampling. You will need to multiply all the values of the
kernel by 2 to yield an up-sampled signal with approximately the same values as you
started with. Plot upsample(g1) on the same axes and note and explain any differences
from what you had before.

(d) Next, we can visualize what information was lost as a result of blurring and subsampling
by computing l0 = g0 − upsample(g1). Plot l0 to see what information it contains
(compared to the components of your original signal). Explain.

(e) This process can be iterated. For i = 1, · · · , 4, compute gi+1 = downsample(gi) and
li = gi − upsample(gi+1). This results in two “pyramid” representations of your signal,
the “Gaussian pyramid” (the gi) and the “Laplacian pyramid” (the li), which are both
a series of vectors of length 128, 64, 32, ...

(f) Repeatedly up-sample each of your pyramid levels gi until you have vectors for each with
the original 128 samples. Plot all of them and explain what you see.

(g) Up-sample all the li to have 128 samples. Plot them along with the up-sampled g5 and
explain what you see.

(h) Finally, sum the upsampled li plus the upsampled g5. What was the result? Why?


