PSYCH-GA.2211/NEURL-GA.2201 — Fall 2025
Mathematical Tools for Neural and Cognitive Science

Homework 3

Due: 28 Oct 2025
(late homeworks penalized 10% per day)

See the course web site for submission details. Reminder: rather than using the functions pinv()
and norm(), use the linear algebra tools we learned in class. Do yourself a favor, and don’t wait
until the day before the due date... start now !

1. Fourier transform of periodic signals.

(a)

Generate and plot a signal (vector) of length 2048 containing the function f(n) =
mod(n, 32)/32. This waveform is known as a “sawtooth”. Note that it’s periodic, with a
period of 32 samples. Play it through your computer speakers or headphones, using the
function sound. Assuming you use the default playback rate of 8192 samples/sec, what
is the duration of your signal (in sec), what is the duration of one cycle of the sawtooth,
and what is the frequency of the repetitions (in cycles/sec)? What note on the piano is
closest to this (consult Google, or a piano!)? In Python you will need a package such as
sounddevice, which allows you to set the sampling rate to 8192 samples/sec.

Compute and plot the Fourier amplitude spectrum, centered at zero. Label the z-axis
using units of cycles/sec. What do you see? What about the plot indicates that the signal
is periodic, and how can you determine the period? Test your assertion by generating
another sawtooth signal, with a period of 24 samples and note what changes in the plot
of the Fourier amplitude spectrum.

Generate and plot another periodic signal, with function g(n) = (14-cos(2m 64 n/2048))2.
Again, compute and plot the Fourier amplitude spectrum, centered at zero. How does
this differ from the plot of the Fourier spectrum of f(n)? Is the periodicity the same
or different? Compare the shape of the function by plotting a period of this function
on top of one period of the previous function. What in the Fourier spectrum indicates
that the waveform shape is different? Play this signal using the sound function. In what
ways does it sound the same, and in what ways does it sound different, compared to the
example from the previous part? (You might also want to compare it to the sound of
functions that are the same shape, but have a different period.)

2. Neurons in visual cortex. The response properties of neurons in primary visual cortex
(area V1) are often described using linear filters. We’ll examine a one-dimensional cross-
section of the most common choice, known as a “Gabor filter” (named after Electrical Engi-
neer/Physicist Denis Gabor, who developed it in 1946 for use in signal processing).

(a)

Create a one-dimensional linear filter that is a product of a Gaussian and a sinu-
soid, exp (—%) cos(wn), with parameters o = 3.5 samples and w = 27 % 10/64 radi-
ans/sample. The filter should contain 31 samples, and the Gaussian should be centered

on the middle (16th) sample. Plot the filter to verify that it looks like what you'd ex-
pect. Plot the amplitude of the Fourier transform of this filter, sampled at 64 locations


https://python-sounddevice.readthedocs.io/en/0.5.1/
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(MATLAB’s £ft function takes an optional additional argument). What kind of filter
is this? Why does it have this shape, and how is the shape related to the choice of
parameters (o, w)? Specifically, how does the Fourier amplitude change if you alter each
of these parameters?

(b) If you were to convolve this filter with sinusoids of different frequencies, which of them
would produce a response with the largest amplitude? Obtain this answer by reasoning
about the equation defining the filter (above), and also by finding the maximum of the
computed Fourier amplitudes (using the max function), and verify that the answers are
the same. Compute the period of this sinusoid, measured in units of sample spacing, and
verify by eye that this is matched to the oscillations in your plot of the filter. Which
two sinusoids would produce responses with about 25% of this maximal amplitude?

(c) Create three unit-amplitude 64-sample sinusoidal signals at the three frequencies (low,
mid, high) that you found in part (b). Convolve the filter with each, and verify that
the amplitude of the response is approximately consistent with the answers you gave in
part (b). (Hint: to estimate amplitude, you’ll either need to project the response onto
sine and cosine of the appropriate frequency, or compute the DFT of the response and
measure the amplitude at the appropriate frequency.)

(d) Verify the convolution theorem. Apply the Fourier transform to each of your three
stimuli. Multiply each by the Fourier transform of the Gabor filter. Inverse Fourier
transform the results and verify that the imaginary part is zero, and the real part is
equal to the result you obtain from the convolution.

3. Deconvolution of the Haemodynamic Response. Neuronal activity causes local changes
in deoxyhemoglobin concentration in the blood, which can be measured using functional mag-
netic resonance imaging (fMRI). One drawback of fMRI is that the haemodynamic response
(blood flow in response to neural activity) is much slower than the underlying neural re-
sponses. We can model the delay and spread of the measurements relative to the neural
signals using a linear shift-invariant system:

r(n) =Y a(n—k)h(k), (1)

where z(n) is an input signal delivered over time (for example, a sequence of light intensities),
h(k) is the haemodynamic response to a single light flash at time & = 0 (i.e., the impulse
response of the MRI measurement), and r(n) is the MRI response to the full input signal.

In the file hrfDeconv.mat, you will find a response vector  and an input vector x containing
a sequence of impulses (indicating flashes of light). Your goal is to estimate the HRF, h, from
the data. Each of these signals are sampled at 1 Hz. Plot vectors r and x versus time to get
a sense for the data. Use the stem command (or plt.stem in Python) for z, and label the
x-axis.

(a) Convolution is linear, and thus we can re-write the equation above as a matrix multipli-
cation, r = Xh, where h is a vector of length M, N is the length of the input x, and X
is an [N + M — 1] x M matrix. Write a matlab function createConvMat, that takes as
arguments an input vector x and M (the dimensionality of h) and generates a matrix X
such that the response r = Xh is as defined in Eq. for any h. Verify that the matrix
generated by your function produces the same response as Matlab’s conv function when
applied to a few random h vectors of length M = 15. Visualize the matrix X as an
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image (evaluate imagesc(X) in MATLAB or plt.imshow in Python), and describe its
structure.

Now, given the X generated by your function for M = 15, solve for h by formulating a
least-squares regression problem:

hopt = arg m}jn ||r — Xh|?

Plot hgp as a function of time (label your x-axis, including units). How would you
describe it? How long does it last?

It’s often easier to understand an LSI system by viewing it in the frequency domain.
Plot the power-spectrum of the HRF (i.e. |F(h)|?, where F(h) is the Fourier transform
of the HRF). Plot this with the zero frequency (DC) in the middle (in Matlab you can
use a built-in function called fftshift), and label the x axis, in Hz. Based on this plot,
what kind of filter is the HRF? Specifically, which frequencies does it allow to pass, and
which does it block?

Use the convolution theorem to now find h,p,; by working in the Fourier domain. You
will need to use the matlab functions fft and ifft. Remember to be careful about how
many samples you choose to have in your fft. Based on the operations you have done,
what can you say about when this method will fail? On the same graph, plot the HRF
impulse response you recovered from parts (b) and (d).

4. Sampling and aliasing. Load the file myMeasurements.mat into matlab. It contains a
vector, sig, containing voltage values measured from an EEG electrode, sampled at 512 Hz.
Plot sig as a function of vector time (time, in seconds, that you should compute).

(a)

Examine your EEG result in the frequency domain. Plot the log of the magnitude
(amplitude) of the Fourier transform of the original signal, over the range [-N/2, (N/2)—
1] (use fftshift). By convention, the “Delta” band corresponds to frequencies less than
4 Hz, “Theta” band is 4-7 Hz, “Alpha” band 8-15 Hz, and “Beta” is 16-31 Hz. For these
data, which band shows the strongest signal? Is there any power in frequencies outside
of these known bands, and if so can you explain the origin of this part of the signal?

Write a function signalBand = reconstructBand(sig,bandName) that reconstructs
the signal using only frequency components from the band corresponding to the string
bandName (e.g., for bandName = ‘Delta’ the reconstruction should be a sum of sinusoids
with frequencies from 0-4Hz). Run this function and plot the first 5 seconds of each of
the bands defined in (a).

The voltage signal is densely sampled and thus expensive to store. Create a subsampled
version of the signal, which contains every sixzteenth value. Is the subsampling operation
linear? Shift-invariant? For the first second of data, plot the subsampled signal, against
the corresponding entries of the time vector, on top of the original signal (use Matlab’s
hold function, and plot original with flag ’ko-" and subsampled version with flag 'r*-’).
How does the reduced version of the data look, compared to the original? Does it provide

a good summary of the original measurements? Explain.

Plot the Fourier magnitude for downsampled signal, after upsampling it back to full
size (i.e., make a full-size signal filled with zeros, and set every 4th sample equal to
sixteen times the corresponding subsampled value). What is the relationship between
these plots and the original frequency plot? Compare the power in each of the frequency
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bands defined in (a) to those of the original signal. Which band has changed the most
(in proportion to its original power)? Plot this band of the original and sampled signals
(using the function you wrote in part (b)) - can you see any difference?



