
PSYCH-GA.2211/NEURL-GA.2201 – Fall 2024
Mathematical Tools for Neural and Cognitive Science

Homework 2

Due: 11 Oct 2024
(late homeworks penalized 10% per day)

See the course web site for submission details. Reminder: rather than using the functions pinv()
and norm(), use the linear algebra tools we learned in class. Please: don’t wait until the day before
the due date... start now!

1. Trichromacy. Load the file colMatch.mat in your MATLAB environment (or use
scipy.io.loadmat for Python). This file contains matrices and vectors related to the color
matching experiment presented in class. The variable P is an N × 3 matrix containing wave-
length spectra for three “primary” lights, to be used in a color-matching experiment. For
these problems N = 31, corresponding to samples of the visible wavelength spectrum from
400 nm to 700 nm in increments of 10 nm.

The function humanColorMatcher.p simulates a normal human observer in a color matching
experiment. For Python, download the file and use from trichromacy import human color matcher.
The input variable light should contain the wavelength spectrum of a test light (a 31-
dimensional column vector). The input variable primaries should contain the wavelength
spectra of a set of primary lights (typically, a 31×3 matrix, as for matrix P described above).
The function returns a 3-vector containing the observer’s “knob settings” - the intensities
of each of the primaries that, when mixed together, appear identical to the test light. The
function can also be called with more than one test light (by passing a matrix whose columns
contain 31-dimensional test lights), in which case it returns a matrix whose columns are the
knob settings corresponding to each test light.

(a) Create a test light with an arbitrary wavelength spectrum, by generating a random
column vector with 31 positive components (use rand in MATLAB or np.random.rand
in Python). Use humanColorMatcher to “run an experiment”, asking the “human” to
set the intensities of the three primaries in P to match the appearance of the test light.
Compute the 31-dimensional wavelength spectrum of this combination of primaries, plot
it together with the original light spectrum, and explain why the two spectra are so
different, even though they appear the same to the human.

(b) Now characterize the human observer as a linear system that maps 31-dimensional lights
to 3-dimensional knob settings. Specifically, run a set of experiments to estimate the
contents of a 3 × 31 color-matching matrix M that can predict the human responses.
Verify on a few random test lights that this matrix exactly predicts the responses of the
function humanColorMatcher.

(c) The variable Phosphors contains the emission spectra of three standard color display
phosphors (from an old-fashioned cathode ray tube!). Suppose you wanted to make the
background color of this screen match the appearance of an arbitrary test light. Write
a matlab expression to compute the three phosphor intensities that would achieve this.
Verify that this particular mixture of phosphor spectra satisfies the “matching” criterion
(i.e., that a human would see this spectral mixture as being identical to the test light).

2

(d) The function altHumanColorMatcher(light,primaries) simulates a color-deficient hu-
man observer in a standard color matching experiment (for Python: from trichromacy

import alt human color matcher). (i) For a random test light, compare the knob set-
tings for this observer with those of the normal human. Do this for several runs. How do
they differ? (ii) The variable Cones contains (in the rows) approximate spectral sensitiv-
ities of the three color photoreceptors (cones) in the human eye: Cones(1,:) is for the L
(long-wavelength, or red) cones, Cones(2,:) the M (green) cones, and Cones(3,:) the
S (blue) cones (for Python users, the indexing starts from 0). Applying the matrix Cones

to any light l⃗ yields a 3-vector containing the average number of photons absorbed by
each cone (try plot(Cones’) to visualize them!). Compute cone absorptions for the test
light, and for the mixture of three matching primaries (by applying the Cones matrix).
Do this for both the normal human observer, and for multiple runs of the abnormal
observer. Try this for several different test lights. How do the cone responses of the
normal and abnormal observers differ? Can you offer a diagnosis of the underlying cause
of color deficiency in the abnormal observer?

2. Polynomial regression. Load the file regress1.mat into your MATLAB or Jupyter note-
book environment. Plot variable Y as a function of X. Find a least-squares fit of the data
with polynomials of order 0 (a constant), 1 (a line, parameterized by intercept and and slope),
2, 3, 4, and 5. [Compute this using svd and basic linear algebra manipulations that you’ve
learned in class!] On a separate graph, plot the squared error as a function of the order of
the polynomial. Which fit do you think is “best”? Explain.

3. Constrained Least Squares Optimization. Load the file constrainedLS.mat into a
MATLAB or Jupyter notebook. This contains an N × 2 data matrix, data, whose columns
correspond to horizontal and vertical coordinates of a set of 2D data points, d⃗n (note that
each d⃗n is a column vector but is a row of the matrix data). It also contains a 2-vector w.
Consider a constrained optimization problem:

min
β⃗

∑
n

(
β⃗T d⃗n

)2
, s.t. β⃗T w⃗ = 1.

There is a family of possible vectors β⃗ that satisfy the constraint β⃗T w⃗ = 1. Geometrically,
any β⃗ whose arrow-tip lies on a specific line perpendicular to w⃗ will satisfy the constraint.
The perpendicular distance of this constraint line from the origin will be 1/||w⃗|| from the
origin (think about the dot product, draw the vector w⃗ and the constraint line to prove this
to yourself). Thus, this is a new contrained optimization that is a bit like total least squares,
except that β is forced to satisfy a linear constraint, rather than forced to be a unit vector.

(a) Rewrite the optimization problem in matrix form. Then rewrite the problem in terms of
a new optimization variable, β̃ (i.e. ’beta tilde’, a linear transformation of β⃗), such that
the quantity to be minimized is now ||β̃||2. Note: you must also rewrite the constraint
in terms of β̃.

(b) The transformed problem is one that you should be able to solve. In particular, you
must find the shortest vector β̃ that lies on the constraint line. Compute the solution
for β̃, and plot the solution vector, the constraint line and the transformed data points.

(c) Transform the solution back into the original space (i.e., solve for β⃗). Plot β⃗, the original
constraint line, and the original data points. Is the optimal vector β⃗ perpendicular to
the constraint line? On the same graph, plot the total least squares solution (i.e., the

3

vector that minimizes the same objective function, but that is constrained to be a unit
vector). Are the two solutions the same?

4. Dimensionality reduction with PCA. Professors Hugh Bell and Wi Zell were recording
extracellular action potentials (i.e. spikes) from cat primary visual cortex late one evening
when their computer malfunctioned. It had already isolated a set of 400 time windows in
which voltages had crossed a threshold, indicating the presence of spike. But these traces
likely arose from multiple cells, with each cell producing a characteristic waveform, and the
computer failed before sorting the voltage traces to determine how many cells were present,
and which spikes arose from each cell. The professors come to you (the only math-tools-
enabled graduate student still in the building at that hour), asking for help. They provide
you with a file windowedSpikes.mat containing a 400 ×150 matrix, data, whose rows contain
the electrode measurements (voltages recorded for each 150 msec window, at 1 msec intervals).
Your task is to determine how many neurons produced these 400 spikes.

(a) Plot the 400 waveforms superimposed and describe what you see. Be sure to label your
axes! Using these spike waveform plots, can you devise a way to deduce how many
neurons produced these spikes? Feel free to include an additional plot containing just a
subset of the waveforms in order to aid in your explanation.

(b) Perform principal components analysis (PCA) on your data, and plot the eigenvalues in
descending order (alternatively, compute the SVD of data). It might help to display the
eigenvalues on a log-scale. Interpret what you see.

(c) Measure the length of the projection of each of the 400 spike waveforms onto the top
two principal components of the dataset, and plot the resulting values as points in
2 dimensions. Describe what you see. Can you deduce how many distinct neurons
produced the 400 voltage traces?

(d) Now project each waveform onto the top three principal axes, and plot in 3 dimensions
(you may want to spin it around, using rotate3d in matlab). Are there any significant
changes you see? Using the 3D plot, can you inform Drs. Bell and Zell how many
neurons they likely recorded from?

