PSYCH-GA.2211/NEURL-GA.2201 — Fall 2025
Mathematical Tools for Neural and Cognitive Science

Homework 2

Due: 10 Oct 2025
(late homeworks penalized 10% per day)

See the course web site for submission details. Reminder: rather than using the functions pinv()
and norm(), use the linear algebra tools we learned in class. Please: don’t wait until the day before
the due date... start now!

1. Trichromacy. Load the file colMatch.mat in your MATLAB environment (or use
scipy.io.loadmat for Python). This file contains matrices and vectors related to the color
matching experiment presented in class. The variable P is an N X 3 matrix containing wave-
length spectra for three “primary” lights, to be used in a color-matching experiment. For
these problems N = 31, corresponding to samples of the visible wavelength spectrum from
400 nm to 700 nm in increments of 10 nm.

The function humanColorMatcher.p simulates a normal human observer in a color matching
experiment. For Python, download the file and use from trichromacy import human _color matcher.
The input variable light should contain the wavelength spectrum of a test light (a 31-
dimensional column vector). The input variable primaries should contain the wavelength

spectra of a set of primary lights (typically, a 31 x 3 matrix, as for matrix P described above).

The function returns a 3-vector containing the observer’s “knob settings” - the intensities

of each of the primaries that, when mixed together, appear identical to the test light. The
function can also be called with more than one test light (by passing a matrix whose columns

contain 31-dimensional test lights), in which case it returns a matrix whose columns are the

knob settings corresponding to each test light.

(a) Create a test light with an arbitrary wavelength spectrum, by generating a random
column vector with 31 positive components (use rand in MATLAB or np.random.rand
in Python). Use humanColorMatcher to “run an experiment”, asking the “human” to
set the intensities of the three primaries in P to match the appearance of the test light.
Compute the 31-dimensional wavelength spectrum of this combination of primaries, plot
it together with the original light spectrum, and explain why the two spectra are so
different, even though they appear the same to the human.

(b) Now characterize the human observer as a linear system that maps 31-dimensional lights
to 3-dimensional knob settings. Specifically, run a set of experiments to estimate the
contents of a 3 x 31 color-matching matrix M that can predict the human responses.
Verify on a few random test lights that this matrix exactly predicts the responses of the
function humanColorMatcher.

(¢) Your colleague down the hall, Dr. Evoprimary, proudly tells you about a new color-
matching configuration using primaries derived from pigments that were most prevalent
in the environment of our evolutionary ancestors. You respond that this is a beautiful
concept, but seems unlikely to offer new insights into human trichromacy, since you can
precisely predict the color matches that will be obtained with these new primaries. A
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wager is made (winner gets a box of Rafetto’s ravioli). Dr. E allows you to measure
the wavelength spectra of the new primaries (stored in variable eP). Derive (write math,
and explain logic) an expression for the color-matching matrix (3x31, maps a light to 3
knob settings) that predicts matches that would be obtained in Dr E’s lab. Compute
this matrix, making use of humanColorMatcher.p with your own primaries, P. Check,
for a random test light, that the predicted mixture of eP primaries matches (produces
the same knob settings when tested with your primaries, P). If it does not, explain why.

The variable Cones contains (in the rows) approximate spectral sensitivities of the
three color photoreceptors (cones) in the human eye: Cones(1,:) is for the L (long-
wavelength, or red) cones, Cones(2,:) the M (green) cones, and Cones(3,:) the S
(blue) cones (for Python users, the indexing starts from 0). Applying the matrix Cones
to any light [ yields a 3-vector containing the average number of photons absorbed by
that cone (try plot(Cones’) to visualize them!). Verify that the cones provide a physi-
ological explanation for the matching experiment, in that the cone absorptions are equal
for any pair of lights that are perceptually matched. First, do this informally, by check-
ing that randomly generated lights and their corresponding 3-primary matching lights
produce equal cone absorptions. Then, provide an extended comment with a more math-
ematical demonstration (an informal proof) using concepts from linear algebra. [Hints
for two possible approaches: (1) write math/code that computes cone responses for any
test light and then computes the weighted combination of primaries that would produce
the same cone responses - show that this is equivalent to the color-matching matrix;
(2) convince yourself (and explain why) it is sufficient to show that the color matching
matrix M and Cones have the same nullspace. Then use SVD to demonstrate that this
is true!]

2. 2D polynomial regression. Load the file regress2.mat into your MATLAB environment.
The matrix D contains 3 columns of data, which we’ll refer to as X, Y, and Z respectively.
The corresponding elements of these vectors, (X, Yx, Zk), represent 3D data points. X and
Y are uniformly distributed on a square grid.

(a)

plot Z as a function of X and Y (using surf in MatLab, or plot_surface in python). To
use the mouse to rotate the 3D space and view the data from different angles, execute
rotate3d on in MatLab, or placing %matplotlib widget at the top of your Juypiter
notebook. Note: you’ll need to reshape the three column vectors into square matrices.

Fit the Z values with polynomials in X and Y, up to order 3: po(X,Y) = By, p1(X,Y) =
Bo+ 1 X + Y, po(X,Y) = Bo + B1X + BoY + B3X? + B4 XY + B5Y2, etc. Compute
this using svd and basic linear algebra manipulations that you've learned in class!

For each of the polynomials, (a) plot the fitted surface (use surf) and data points
(use plot3) in the same figure, and rotate it around to convince yourself that the fit
is reasonable. (b) compute the error for each element of Z, plot a histogram of these
values, and compute the mean of the squared errors. How does the error behave as you
increase the order of the polynomial? Which polynomial do you think gives the “best”
fit? Explain.

. Trimmed regression. One of the limitations of least-squares regression is sensitivity to out-

liers. A common solution is to iteratively discard the bad points. Load the file regress3.mat.
First solve the standard regression problem, using a constant and a linear term. Then write
a loop that locates the data point with the largest magnitude error (use function max), elim-
inates that row from the data vector and regressor matrix, and then re-solves the regression
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problem. Note that you can also do this by including a diagonal weight matrix, and zeroing
the entry corresponding to the outlier. On each iteration, plot the points and the best-fitting
regression line, plot a histogram (use histogram in MATLAB or plt.hist in Python) of
the squared errors over all points, and record the average over these errors (i.e., on the nth
iteration, save the average error in the nth element of the vector). You may want put the two
plots in separate figure windows, and you may want to pause after each iteration (use pause
in MATLAB or time.sleep in Python). Run the loop until half of the data points have been
discarded.

After running, plot the vector of average errors, as a function of iteration, in a third figure.
Based on this, and the histograms you observed, which iteration gave the “best” fit? To
visualize this solution, plot the corresponding regression line, and all of the data points,
labeling the discarded data points with a different plot symbol. Did you make a good choice?

. Constrained Least Squares Optimization. Load the file constrainedLS.mat into a
MATLAB or Jupyter notebook. This contains an N x 2 data matrix, data, whose columns
correspond to horizontal and vertical coordinates of a set of 2D data points, Jn (note that
cach d, is a column vector but is a row of the matrix data). It also contains a 2-vector w.
Consider a constrained optimization problem:

min 3 (F14)", st Fw=1

There is a family of possible vectors 5 that satisfy the constraint BT w = 1. Geometrically,
any 5 whose arrow-tip lies on a specific line perpendicular to @ will satisfy the constraint.
The perpendicular distance of this constraint line from the origin will be 1/||@|| from the
origin (think about the dot product, draw the vector @ and the constraint line to prove this
to yourself). Thus, this is a new contrained optimization that is a bit like total least squares,
except that § is forced to satisfy a linear constraint, rather than forced to be a unit vector.

(a) Rewrite the optimization problem in matrix form. Then rewrite the problem in terms of
a new optimization variable, 3 (i.e. 'beta tilde’, a linear transformation of 5), such that
the quantity to be minimized is now ||3]|2>. Note: you must also rewrite the constraint
in terms of B .

(b) The transformed problem is one that you should be able to solve. In particular, you must
find the shortest vector 3 that lies on the constraint line. Compute the solution for j,
and plot the solution vector, the constraint line and the data points after transforming
them in the same way that 8 was transformed to §.

(¢) Transform the solution back into the original space (i.e., solve for 3). Plot /3, the original
constraint line, and the original data points. Is the optimal vector 5 perpendicular to
the constraint line? On the same graph, plot the total least squares solution (i.e., the
vector that minimizes the same objective function, but that is constrained to be a unit
vector). Are the two solutions the same?



