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Fall semester, 2025

Section 5:
Statistical Inference and Model Fitting

Scientific process

Observe / measure data

Generate predictions,
design experiment

Summarize / fit model

Adjust model

The sample average w O e
1 N
T=y 2
n=1

What happens as N increases?

® Variance of Z is ¢2/N (the “standard error of the mean”,
or SEM), and so converges to zero [on board]

® “Unbiased” T converges to the true mean, p, = E(Z)
(formally, the “law of large numbers™) [on board]

® The distribution p(Z) converges to a Gaussian (mean fi
and variance o2 /N): formally, the “Central Limit Theorem”




700 samples

Measurement
(sampling)

N7

Inference

sample mean: [-0.05 0.83]
sample cov: [0.95 -0.23
-0.23 0.29]

true density

true mean: [0 0.8]
true cov: [1.0 -0.25
-0.250.3]

Central limit for a uniform distribution...

10k samples, uniform density (sigma=1)

(ur + u)/V2

(uy + ug + us + ug)/VA

Central limit for a binary distribution...
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Classical “frequentist” statistical tests

Discrete,
) Continuous. b Ik
Type of question? Chi-square tests, one
and two sample
Relationships. Differences

[ Do you have dependent & Diferences ”""‘J—_
| independent variables? between what? Variances Fmax testor
Yes . Bartiett's test
Mutt

iple means_

Single variable
Regression Gorrelation
analysis analysis
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correlation m
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[ Transtorm data? |q—N satisfied?
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Mann-Whitney U or Hf significant, do posthoc test:
[ Swudonts Hest ! Wilcoxon test I Bonferroni's, Dunn's, Tukey's, etc.

[Statistical Rethinking, Richard McElreath]

Classical/frequentist approach - z

* In the general population, 1Q The IQ distribution

is known to be distributed
normally with:
u=100, =15

* We give a drug to 30 people
and test their IQ

Probability

* Hypotheses:
Hi: NZT improves 1Q
Ho (“null”): it does nothing

55 70 85 100 115 130 145
1Q score

Test statistic

» We calculate how far the observed value of the
sample average is away from its expected value.

* In units of standard error.
* In this case, the test statistic is

_X-p_ x-H
SE  6/IN

» Compare to a distribution, in this case z or N(0,1)

z




Does NZT improve IQ scores or not?

Probability

Reality
Yes No
Type I error

é Correct O-€TTor
g “False alarm”
E Type II error

> p-error Correct

“Miss”
The z-test

The 1Q distribution

55 70 85 100 115 130 145
1Q score

e u =100 (Population mean)

¢ ¢ =15 (Population standard deviation)

e N=30 (Sample contains scores from
30 participants)

e Xx=108.3 (Sample mean)

e z= (x—uw)/SE =(108.3-100)/SE
(Standardized score)

« SE=g/VN=15N30=2.74

 Error bar/Cl: +2 SE

* z=8.3/274=3.03

¢ p=0.0012

« Significant?

¢ One- vs. two-tailed test

What if the measured effect of NZT had been
half that?

Probability

The 1Q distribution

55 70 85 100 115 130 145
1Q score

e =100 (Population mean)

* ¢ =15 (Population standard
deviation)

* N =30 (Sample contains scores from
30 participants)

¢ Xx=104.2 (Sample mean)

e z= (x—p)/SE=(104.2-100)/SE

+ SE=¢/VN=1530=2.74

e z=42/274=1.53

* p=0.061

* Significant?




Significance levels

* Are denoted by the Greek letter a.

* In principle, we can pick anything that we
consider unlikely.

* In practice, the consensus is that a level of 0.05 or

1 in 20 is considered as unlikely enough to reject
Ho and accept the alternative.

* Alevel of 0.01 or I in 100 is considered “highly
significant” or “really unlikely”.

Common misconceptions

Is “Statistically significant” a synonym for:
* Substantial

* Important

* Big

* Real

Does statistical significance gives the

* probability that the null hypothesis is true

* probability that the null hypothesis is false

* probability that the alternative hypothesis is true
* probability that the alternative hypothesis is false

Meaning of p-value. Meaning of CI.

Student’s #-test

¢ ¢ not assumed known
v

* Use Z(x[ _)?)2

§? = izl

N-1
« Why N-1? s is unbiased (unlike ML version), i.e., E(s?) = ¢°

* Test statistic is t= XKy
s/INN

¢ Compare to ¢ distribution for CIs and NHST
* “Degrees of freedom” reduced by 1 to N-1




The ¢ distribution approaches the normal
distribution for large N

n=1

Probability

The z-test for binomial data

Is the coin fair?

Lean on central limit theorem

Sample is # heads out of m tosses

Sample mean: p=n/m

Ho:p=0.5

Binomial variability (one toss): o= \/E , where g=1-p
Test statistic: L D—D,

_Jpoqo/m

Compare to z (standard normal)

For CI, use —
izam/pq / m

Other frequentist univariate tests

2* goodness of fit

x* test of independence

test a variance using 2°

F to compare variances (as a ratio)
Nonparametric tests (e.g., sign, rank-order, etc.)




Estimation of model parameters (outline)

e How do I estimate parameters from data?
e How “good” are my estimated parameters?

e How well does my model explain data to which it
was fit? Other data (prediction/generalization)?

e How do I compare two models?

Estimation

* An “estimator” is a function of the data, intended to
provide an approximation of the “true” value of a
parameter

* One can evaluate estimator quality in terms of squared
error, MSE = bias”2 + variance

* Traditional statistics often aims for an unbiased
estimator, with minimal variance (“MVUE”)

* More nuanced view: trade off bias and variance,
through model selection, “regularization”, or
Bayesian “priors” ...

The maximum likelihood estimator (MLE)

Sample average is appropriate when one has direct
measurements of the thing being estimated. But one may want
to estimate something that is indirectly related to the
measurements. ..

Natural choice: assuming a probability model p(xX|6)
find the value of @ that maximizes this “likelihood” function

O({Z,)) = arg max Hp(fn 16) o /_\

p(10)

@
= arg mgaxglogp(:vﬂe) . . .




Example: Estimate the true probability
of a flipped coin landing “heads” up,
by observing some samples

66% ?

Example ML Estimators - discrete

. . N N-H (H = # heads
Binomial: p(HNﬁ):[ " ]QH(I—B) observed, in N
flips of a coin,
H with probability of
ﬁ heads 6)




Likelihood: 1 head observed Likelihood: 1 tail observed
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Likelihoods, p(H|N,0)

H=0 1 2 3
More heads >

Convergence (“consistency’)

Running Proportion of Heads

Flip Sequence = HHTHHTHTTT.

1.0

Proportion Heads

End Proportion = 0.494
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Example ML Estimators - discrete

Binomial: p(H\N,G)z
. H
O N
Poisson: p({kn}\0)=

(H = # heads
observed, in N
flips of a coin,

with probability of
heads 6)

[ Z je”(l—e)‘v’”

N ghe (k’s are measured
H P counts,
n=1 n with mean arrival
rate of 6)
[on board]

Example ML Estimators - continuous

1
4

Uniform: p(z]0) = {0

0 = mgx{xn}

0<z<40

otherwise

(Note: this is biased!)

Two estimators for range of a uniform distribution

Given N samples {z,,} from the
uniform distribution over [0, 6] ,

consider two estimators of 6:

han(fn}) = = S

n

MSE = bias? + var

MLE (max)
—— Alt @'avg)

10
#samples (N)

MLE (max) estimator

mean
0+ 1 stdev

- -~ true value

#samples (N)

alt (2*avg) estimator

——mean
£ 1 stdev
- = true value

bias : E(fay) = 0

2

I

10’
# samples (N)

10°




Two estimators for range of a uniform distribution

bias-corrected MLE: max*(N+1)/N)

Given N samples {z,,} from the e E—
uniform distribution over [0, 4] ::@JJ‘SEZ
consider two estimators of ¢: s

08 //_/

0.6

0

0/6

10’ 10?

#samples (N)

alt (2*avg) estimator

MSE = bias? + var

bias-corrected MLE — mean
Alt (2"avg) 14 0+ 1 stdev
= = true value
12
10?2 .
< 1
N

10° 02
10° 10’ 102 10° 10! 10%
#samples (N) # samples (N)

Example ML Estimators - Continuous

L o<a<o
Uniform: pzlf)=4°¢ ~—~"~
0 otherwise

6 = max{z,} (Note: this is biased!)
ML g n . N1
=- O,
ML N
G . ( ‘ ) 1 ,(mfgﬁ
aussian: p(z|p,0) = e 2o
' V2mo
= 2onn (sample average, again)
ML N
52 — Zn(ln — ﬂ)2 (Note: this is biased!)
ML N 52 / 52
oML = 7 _ 7ML
[on board]

Summarizing errors of ML estimators

Bias: the MLE is asymptotically unbiased and Gaussian, but
can only rely on these if:

* the likelihood model is correct
* the likelihood can be maximized

* you have lots of data

Variance: (error bars)
* S.E.M. (relevant for sample averages only)
* second deriv of NLL (multi-D: “Hessian™)
* simulation (resample from p(m\&))
* bootstrapping (resample from the data, with replacement)




Bootstrapping

* “The Baron had fallen to the bottom of a deep lake.
Just when it looked like all was lost, he thought to
pick himself up by his own bootstraps”

[Adventures of Baron von Munchausen, by Rudolph Erich Raspe]

* A (re)sampling method for computing estimator
dispersion (eg., stdev or confidence intervals)

+ Idea: instead of looking at distribution of estimates
across repeated experiments, look across repeated
resamplings (with replacement) from the existing data
(“bootstrapped” data sets)

HEART ATTACK RISK |  TNew York Times, 27 Jan 1987]
FOUND TO BE CUT
BY TAK]NG ASP]R[N Histogram of bootstrap estimates:

LIFESAVING EFFECTS SEEN

Study Finds Benefit of Tablet
Every Other. Day Is Much
Greater Than Expected

The summary statistics in the newspaper article are very simple:

heart attacks subjects
(fatal plus non-fatal)
aspirin group: 104 11037
placebo group: 189 11034
0.2 0.4 0.6 0.8 1
~ 104/11037 H
i= = .55. 11 =
TR Ly > with 95% confidence,
If this study can be believed, and its solid design makes it very
believable, the aspirin-takers only have 55% as many heart attacks 043 <6 <0.7

as placebo-takers.

Of course we are not really interested in 8, the estimated ratio.
What we would like to know is 8, the true ratio

[Efron & Tibshirani *98]

strokes  subjects

aspirin group: 119 11037
placebo group: 98 11034 (1:3)
For strokes, the ratio of rates is
~  119/11087
f=——"— =121 14
98/11034 (1]

It now looks like taking aspirin is actually harmful. However the
interval for the true stroke ratio € turns out to be

93 <8< 159 (1.5)
with 95% confidence. This includes the neutral value = 1, at
which aspirin would be no better or worse than placebo vis-a-vis
strokes. In the language of statistical hypothesis testing, aspirin

was found to be significantly beneficial for preventing heart attacks,
but not significantly harmful for causing strokes.

[Efron & Tibshirani *98]




Permutation test

* Given {nl,n2} measurements under two
different conditions, are they significantly
different (i.e., can we reject null hypothesis?)

* Measure difference in means, m2-m1

* Construct permuted sets of {n1,n2}
measurements, and compute difference in means
for each of these

* Ask: How far in the tail is the true difference in
means? One-sided p-value is proportion of
permutation values > m2-ml

Taxonomy of model-fitting errors

¢ Unexplainable variability (e.g., due to noisy
measurements)

¢ Optimization failures (e.g., local minima)
¢ Overfitting (too many params, not enough data)

® Model failures (what you’d really like to know)

Optimization...

Heuristics,
exhaustive search,
(pain & suffering)

Iterative descent,
possibly non-unique
(local minima)
Quadratic
Iterative descent,

unique

Closed-form,
and unique

N\
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How do we avoid overfitting (i.e., concluding that M=7 is “best”)?

Model Comparison

* If models are optimized according to some objective, it is
natural to compare them based on the value of that objective...

- for least squares regression, compare the residual squared
error of two models (with different regressors).

- for ML estimates, compute

the likelihood (or log likelihood)

ratio, and compare to 1 (or zero).

* Problem: evaluating the objective with the same data used to
optimize the model leads to over-fitting!

Cross-validation

A resampling method for estimating predictive error of a model.
Widely used to identify/avoid over-fitting, and to provide a fair

comparison of models.

(1) Randomly partition data into a
“training” set, and a “test” set.

(2) Fit model to training set.
Measure error on test set.
(3) Repeat (many times).

(4) Choose model that minimizes
the average “cross-validated”
(test) error

Example: Using cross-validation to
select the degree of a polynomial model:

—train error
—test error
— true degree
true error

15 20

10
polynomial degree




Ridge regression
(a.k.a. L> regularization)

Ordinary least squares regression:

OLS estimate
Ridge
estimate

. — 2112
argmin || — X 5|
B
“Regularized” least squares regression:

7th-order polynomial regression:

srgmin 17— X512 + Al|B| 2

* data
LS reg
—Ridge reg

Equivalent formulation: MAP estimate, N
assuming Gaussian likelihood & prior! 8

Bridge = (XTX + )\I)_lXT?j S

Choose lambda by cross-validation: 2

Ridge Regression trades off bias and variance:

0.6
|

0.4

predictive (cross-validated) MSE

N
(=]
- Linear MSE
Ridge MSE
— Ridge Bias"2
o _| — Ridge Var
o
T T T T T T
0 5 10 15 20 25

[from http://www.stat.cmu.edu/~ryantibs/datamining/]

LASSO regularization

(“least absolute shrinkage and selection operator”,
a.k.a. L; regularization)

argmin || — 75]|* + Al Bors

A2

: =112
Assuming || 7]|* =1, BrLasso
solution is a “soft-threshold” .
on ﬁTf ﬂridgc
MAP interpretation:

Gaussian noise, with
“Laplacian” prior
A2



http://www.stat.cmu.edu/~ryantibs/datamining/

Ridge regression vs. LASSO (2-dimensional) solutions

Ridge (L2) LASSO (L)

eA=0

31 o A=o00 31
e other A /
Bo

of regularizer

“sparse”

LASSO vs. ridge regression

Table 2.1 Crime data: Crime rate and five predictors, for N =50 U.S. cities.

city | funding hs not-hs college college4 crime rate

T 10 Y 31 20 78

2 32 21 43 18 494

3 57 0018 16 16 643

4 31 11 2 19 341

5 67 72 9 29 24 73

50 6 67T 2 18 16 940
Optimal weights: Optimal weights:
Ridge Regression Lasso

funding funding
| — Dbest (cross-
validated)

wid  lambda

B L w /,7
college | college

10
I

Coefficients
Coefficients

A
[From Hastie, Tibshirani, Wainwright 2015]
The “Relaxed LASSO”
Solve for LASSO
2. Eliminate unused
regressors (those with
zero coefficients) b
3. Re-fit (using LS
regression) “relaxed LASSO” |
|
LASSO

h




[Insert LNP neural fitting example here]

Bayesian Inference

N\ /
p(data |6) p(6)
p(data)
AN

Normalization factor

“Posterior”

N\
p(0|data) =

Example: Posterior for coin

infer whether a coin is fair by flipping it repeatedly
here, x is the probability of heads (50% is fair)
1., are the outcomes of flips

Consider three different priors:

suspect fair suspect biased

no idea

Pix)

04 06

0.8




p(x)

prior fair prior biased prior uncertain
; 2 R
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15-
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x likelihood (heads)
'
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B
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. x
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X likelihood (heads)

plheads|x)
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02 04 06 08 1
= new posterior

2 25 29
2 _ 2

=18 z =
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£ y
05l 05
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x
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previous posteriors

24 25

4 2
£ z
15 =19
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N |
05 09

02 04 06 08 1
x

X likelihood (tails)
1

02 04 06 08
x

= new posterior

25
1.5
~ 2
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= 3
15 ER
B i3
05
0.5
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Posteriors after observing 75 heads, 25 tails

10, 10, 10,
8 8 8
e e e
] Q 9
P @ 9 S o
T T T
2 4 2 4 2 4
=3 &3 %
& & &
2 2 2
0 o o
0 02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1
x x x

—>prior differences are ultimately overwhelmed by data

Bayesian estimators

Summarize central tendency of posterior:

¢ Posterior mode (“maximum aposteriori estimate” - MAP)

* Posterior mean (minimizes squared error - MMSE)
Summarize dispersion with posterior variance

¢ Posterior median (minimizes abs error)
Summarize dispersion with posterior quantiles

Bayesian (posterior) confidence intervals

PDFs
HIT 10H/5T 20H /10T

]
-




Bayesian inference: Gaussian case

For measurements with Gaussian noise, and
assuming a Gaussian prior:
® posterior is Gaussian, allowing sequential
updating
® precision is sum of measurement and prior
precisions
® mean is precision-weighted average of prior
mean and measurement
® explains “regression to the mean” as shrinkage
toward the prior

Bayesian inference: Gaussian case
y=z+n, @~ N(t,0z), n~ N0 o0n)

p(zly) o p(ylz)p(z)

z

-3 {ﬁn(zfy)z} e*% [;lz(zfuzf]

A~ posterior] €

.| likelihood prior 1

Yy | M 1 1
(5) /(o
<<7% o3 o o2

The average of y and yx, weighted by

X inverse variances (a.k.a. “precisions”)!

Regression to the mean

“Depressed children treated with an energy drink improve
significantly over a three-month period. I made up this
newspaper headline, but the fact it reports is true: if you
treated a group of depressed children for some time with an
energy drink, they would show a clinically significant
improvement....”

“It is also the case that depressed children who spend some
time standing on their head or hug a cat for twenty minutes

a day will also show improvement.”

- D. Kahneman




Two noisy measurements of the same variable:

Y1 =z +mn z~ N(0,0,) o o
Yo =T+ N2 ng ~ N(0,0,), independent v v
C - Ufc —&—a% 0325

A

LS Regression:

B = arg mﬁinE [||Z/2 - »3311“2}

_ E[y1y2} _ o'g 0
Eyf] — oi+oa? |
E(y2|y1) = B in Least-squares | (.

regression
“regression
to the mean”

TLS regression -3

(largest eigenvector) -3 0 8

Hierarchy of common statistical estimators

- -

* Maximum likelihood (ML): Z(d) = argmax p(d |x)
(requires likelihood, p(d |z)) ¢

* Maximum a posteriori (MAP): #(d) = arg max pla|d)
(requires prior, p(z)) )

)

* Bayes least squares (BLS):  #(d) = argminE ((95 — &) ) J)
(special case: squared loss) N .
—E (z d)

* Bayes estimator (general): aﬁ(cf) = arg mjinE (L(;r, z)
(requires loss, L(x,%)) ‘

Bayesian Model Comparison

® Eg: Is the coin fair? Compared to what?

¢ Consider twomodels: M :p=0.5 M,:p=0.6

p(D|M,)P(M,)

M |D)=
p(M, | D)= E=

Compare their posterior ratio:

p(M,|D) _ p(D|M)P(M))
p(M,|D)  p(D|M,)P(M,)




Comparing models’ predictive performance

Option 1: Include a penalty for number of parameters:
For an ML estimate: 0 = arg mein [— In p( 79)]
a. Akaike information criterion (AIC) [Akaike, 1974]
Eac(d, 6) = 2 dim(6) — 21n p(d]d)
b. Bayesian information criterion (BIC) [schwartz, 1978]
Egic(d, 0) = dim(d) In [dim(cf)} — 2Inp(d]f)
valid when dim(d) >> dim(d)

Option 2: Cross-validation
(evaluate generalization to held-out data)




