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Abstract
Signal detection theory, introduced in the 1950’s, has become the primary performance 
model and data-analysis method for sensory experiments (in audition, vision, etc.) in 
which the participant is required to detect whether a stimulus is present or to 
discriminate between two possible stimuli. For example, in a “yes-no” experiment, on 
each trial either a stimulus is shown (a dim visual pattern or quiet sound) or there is no 
stimulus (a blank screen or silence) and the participant responds either “yes” (there is a 
stimulus) or “no” (there isn’t). Signal detection theory allows the experimenter to 
separately estimate discriminability (the observer’s ability to discriminate the presence 
or absence of the stimulus) and bias (the observer’s preference to respond “yes” or 
“no”). In the intervening years, the method has been generalized and its applications are 
now widespread, including applications to sensory coding, memory, value-based 
decision-making, and analysis of the information content of neural spiking. The same 
analysis has also been used in applied settings to understand the performance of 
baggage screeners, disease diagnosis from medical images and the efficacy of medical 
diagnostic tests. I review the theory here and discuss its applications to behavioral data, 
to neural responses, and its recent use in modeling both discrimination judgments as 
well as metacognition: the observer’s stated confidence in those judgments.
Keywords: signal detection, ROC curve, decision-making, metacognition, d-prime

Introduction
Signal detection theory, also sometimes called sensory decision theory, grew out of 
statistical decision theory (all of which conveniently have the acronym SDT). It provides 
both a theory of how decisions under uncertainty are made, as well as a method for 
analyzing behavioral and neural data. The earliest papers that developed signal 
detection theory (Peterson, Birdsall, & Fox, 1954; Van Meter & Middleton, 1954) came 
from the mathematics and engineering of known or uncertain signals passed through 
noisy communication channels. The early work is summarized in the classic text by 
Green and Swets (1966). Introductory guides to the theory that emphasize use of the 
theory to analyze behavioral data include those by Macmillan and Creelman (1991) and 
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Wickens (2002). A mathematical review of the theory is described by Falmagne (1985, 
Chapter 10).
Suppose you are out on a very foggy night and looking down the street ahead of you. 
You hear a sound that seems like footsteps and get the vague visual impression of 
someone walking toward you. Is there someone there or not? Signal detection theory 
suggests that, somewhere in your brain, you combine all the evidence for the presence 
of a person — a faint smell of perfume or cologne, the sound of footsteps that sound 
like someone wearing boots, a faint outline in the fog that resembles a human figure — 
resulting in a single number that represents the strength of the evidence. That number 
may not be explicitly represented in a single place in the brain (e.g., the firing rate of a 
single neuron), but might be distributed across multiple neurons. That strength of 
evidence should typically be small if no one is out there, and large if there is someone 
there. 
If one repeats this experience multiple times, the strength of the evidence will vary 
across occasions, even if the circumstance (absence or presence) doesn’t change. That 
is, the strength of the evidence is random, on average higher when someone is there, 
on average lower when no one is there. This stochasticity of the evidence can come 
from many sources, both external and internal. External randomness can be from the 
varying density of the fog, the variation in sound, smell and body outline across people 
and across viewpoints, and even from the randomness of the stimulus itself, such as the 
random number of photons arriving from a dim location in the scene viewed through a 
fixed-size aperture (the pupil of your eye) over a fixed time period. Randomness can be 
internal to the observer as well, such as the randomness of neural responses to 
repeated, identical stimuli. Signal detection theory provides a model of how observers 
derive a binary response (the person is there or isn’t) using this noisy evidence.
In what follows, I will describe the theory and its analysis relative to experiments using 
visual stimuli that vary in “intensity” (which can refer to luminance or contrast or any 
other intensive variable). But, signal detection theory is applicable to a wide variety of 
tasks including sensory experiments in multiple sensory modalities (vision, audition, 
touch, proprioception, etc.), neuroeconomic experiments (where the intensive 
parameter is value), experiments on memory (where the intensive parameter is the 
strength of the memory representation), etc. It applies in everyday life when making 
yes-or-no decisions based on uncertain evidence (Does this suitcase contain a 
weapon? Does this mammogram indicate breast cancer? Etc.).

Signal Detection Theory: Optimal Decision-Making
Measurement model 
In this section, I begin by describing the measurement model, that is, the model of the 
situation with which the observer is confronted in making a detection decision under 
uncertainty. We then describe a normative model from the observer’s perspective, that 
is, what the observer should do to perform optimally. In the subsequent section, we 
switch to the experimenter’s perspective, that is, a descriptive model of observer’s 
behavior and how the model’s parameters can be estimated from behavioral data.
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INSERT FIGURE 1 ABOUT HERE

Figure 1. Standard signal detection theory. (A) The probability distribution for the 
evidence  on no-signal (N) and signal trials (S)  with means  and  and common 
standard deviation . (B) The likelihood values  and  corresponding to a 
measured evidence value . (C) The maximum-likelihood observer sets a criterion  
where the curves cross and says “yes” when the decision variable exceeds that criterion. 
(D) The likelihood ratio ( ) increases monotonically with . Any criterion 
on likelihood ratio corresponds to a criterion on the decision variable . The optimal 
criterion, for equal priors and payoffs,  (where the curves cross in panel C) 
corresponds to a criterion on likelihood ratio, .

In standard signal detection theory, for a given decision (e.g., one trial of an 
experiment), there are two possible states of the world, either there is a signal (“S”) or 
there is no signal (“N”). It is the observer’s task to determine whether the world is in 
state “S” or “N”. In our example, “S” represents a scene in which a person is 
approaching you. The observer makes an observation of that world state (views a visual 
display, listens to an auditory stimulus, etc.), resulting in a measurement, which is a 
single number (the “decision variable” ) that summarizes the evidence concerning the 
state of the world (e.g., the combined evidence from vision, audition and smell that 
someone is approaching). We assume that  is typically larger when a signal is present 
(e.g., when someone is approaching) than when it is absent. The decision variable is 
noisy, that is, it varies from trial to trial even when the stimulus is fixed. For any given 
state of the world, we assume that the distribution of  is Gaussian (i.e.,  is normally 
distributed) and that the variance of this distribution is fixed, not depending on whether a 
signal is present or not. Thus, the measurement model is (Fig. 1A):

(1)

Signals typically lead to larger values of  than when no signal is present, that is, 
. Signal strength corresponds to the difference in the means .

Observer’s perspective and the normative model 
The measurement model above describes the situation with which an observer is 
confronted. The world is either in state  or  (a person is approaching or not) and 
provides the observer with a noisy measurement  (e.g., the sensory evidence). The 
observer knows the value of  and wants to infer whether the state of the world is  or 

, that is, whether to say “yes” or “no”. The probabilities given in Eq. 1 are 
measurement distributions, that is, the probability of getting any particular measurement 
 on a trial when the state of the world is, for example, . But, for the observer, these 
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probabilities are, in a sense, backwards. The decision-maker knows the value of . 
What the decision-maker doesn’t know is the true state of the world. Thus, from the 
decision-maker’s perspective,  is the probability of getting the measurement  
(which the observer knows, and therefore is no longer random) given a particular state 
of the world  (which the observer doesn’t know). When a conditional probability is 
regarded in this way (the value to the left of the “|” is known and fixed, and the value 
after it is unknown and to be estimated or decided upon), it is referred to as a likelihood. 
What decision should the observer make? Referring to Fig. 1B, the observer receives 
measurement  and thus knows the two likelihoods  and  (the values of 
the two curves above the measurement). A simple decision procedure is to choose the 
world state that is more likely, that is,

(2)

This is called the maximum-likelihood (or ML) observer. We will see below that this is an 
optimal decision rule in certain circumstances, but is not always optimal. Note that the 
curve for  is always above that for  to the right of where the two curves 
cross. The ML rule is (Fig. 1C):

(3)

The rule is that the observer should compare the evidence to a fixed criterion (here, the 
criterion is ) and say “yes” when the measurement exceeds the 
decision criterion.
The ML rule may seem a little ad hoc, since likelihood is a kind of slippery concept; it is 
the probability of something you already know to be true (the measurement). It makes 
more sense, perhaps, to compare the probabilities of the two events you don’t know, 
that is, the possible states of the world. Thus, one might prefer to adopt the following 
decision rule:

(4)

Notice that the only difference between Eqs. 2 and 4 is the order of the items in the 
conditional probabilities. The curves in Fig. 1A provide the values of the likelihood of 
each state of the world given the measurement. For the observer to determine the 
probabilities in Eq. 4, we need to apply Bayes’ Rule to each term:

(5)

x

p(x |S ) x

S

x p(x |N ) p(x |S )

Say “yes” if p(x |S ) > p(x |N )
Say “no” otherwise.

p(x |S ) p(x |N )

Say “yes” if x >
μS + μN

2
Say “no” otherwise.

c = (μS + μN)/2

Say “yes” if p(S |x) > p(N |x)
Say “no” otherwise.

P(S |x) =
p(x |S )P(S )

p(x)

P(N |x) =
p(x |N )P(N )

p(x)
.



5

In these equations, we have new terms  and . These are called 
prior probabilities (see Vol. 1, Chapter 26). They are the probabilities of the two possible 
states of the world prior to collecting the evidence . For example, if you were out 
waiting for a friend who said they would arrive around this time,  would be high. In 
a lab experiment, if there is an equal number of signal and no-signal trials, then 

.
 and  are posterior probabilities, that is, they are the probabilities of the 

two possible states of the world after the measurement is made. (Minor note: I’m using 
the standard convention of denoting probabilities of discrete events as  and probability 
densities for continuous domains as .) Thus, the decision procedure in Eq. 4 is known 
as the maximum a posteriori (or MAP) rule, as it chooses the state of the world with 
maximum posterior probability. The term in the denominators in Eq. 5 is a nuisance term 
that ensures that . Fortunately, we won’t need to compute it. 
Substituting Eq. 5 into Eq. 4 and rearranging, the MAP rule becomes

(6)

The value on the left-hand side is called a likelihood ratio. It is the ratio of the values of 
the two curves above the measurement (Fig. 1B). The right-hand side is called the prior 
odds, and provides a criterion, , that the likelihood ratio must exceed to say “yes”. If 
the prior odds are equal to one, that is, no-signal and signal trials are equally likely to 
occur, then Eq. 6 yields the same decision procedure as maximum likelihood (Eq. 2). 
Fig. 1D illustrates the value of the likelihood ratio as a function of . As you can see, the 
likelihood ratio increases monotonically as a function of  so that Eq. 6, a criterion on 
likelihood ratio, will again result in a procedure that compares the strength of the 
evidence to a criterion, that is:

(7)

For the MAP procedure, the optimal criterion  will depend on the means (  and 
), the common standard deviation ( ) and the prior odds.

INSERT FIGURE 2 ABOUT HERE

Figure 2. Criterion and decision outcomes. (A) When a signal was presented, these areas 
represent the probabilities of a hit and a miss. (B) When no signal was presented, these 
areas represent the probabilities of a false alarm and a correct reject. (C) The criterion  
indexes the observer’s bias to say “yes”. Low values lead to a liberal bias: a high hit rate 
and few correct rejects. (D) Moving the criterion rightward leads to a conservative bias: a 
reduced hit rate, but increased correct rejects.

There are two possible states of the world and two possible decision outcomes, which 
are named as follows:

P(S ) P(N ) = 1 − P(S )

x
P(S )

P(S ) = P(N ) = 0.5
P(S |x) P(N |x)

P
p

P(S |x) + P(N |x) = 1

Say “yes” if 
p(x |S )
p(x |N )

>
p(N )
p(S )

= βopt

Say “no” otherwise.

βopt

x
x

Say “yes” if x > copt
Say “no” otherwise.

copt μS
μN σ

c
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Once the various elements of the theory are known (the specifics of the two 
measurement distributions and the criterion), the theory predicts the probability of each 
of these four possible trial outcomes (Fig. 2A,B). This 2x2 set of possible outcomes 
should sound familiar. It’s the same 2x2 one encounters in typical descriptions of 
hypothesis tests in statistics (see Vol. 1, Chapter 25). Type I or  error corresponds to 
the false-alarm rate ( , i.e., rejecting the null hypothesis when it is correct) 
and type II or  error corresponds to the miss rate ( , i.e., accepting the null 
hypothesis when it is false). The same 2x2 appears in medical decision-making, where 
diagnostic tests for disease are rated by their sensitivity (i.e., the hit rate, , 
the probability of detecting the disease when the patient is sick) and specificity (i.e., the 
correct-reject rate, , the probability of failing to detect the disease when the 
patient is healthy).
Examining Eq. 6, if signal trials are more prevalent than no-signal trials, the prior odds, 

 will be low and thus the observer will require only a small likelihood ratio to 
lead to a “yes” response. In other words, in this situation, the criterion  will be low, a 
liberal criterion, so that only weak evidence is required to say “yes” (Fig. 2C). In our 
example, if you already expected a friend was arriving, then the slightest hint of an 
approaching person will lead to a conclusion that your friend is arriving. The result of a 
low criterion is a high hit rate (correct “yes” responses when the signal is present) and 
low correct-reject rate (correct “no” responses when the signal is absent). Conversely, if 
no-signal trials are more prevalent (e.g., you are on a road that is rarely travelled), the 
resulting criterion will be high, a conservative criterion, so that stronger evidence is 
required to say “yes” (Fig. 2D). The result is a low hit rate as well as a high correct-reject 
rate. The rates of these two correct responses trade off as the criterion is varied.
Among other fields, sensory neuroscience has been heavily influenced in recent years 
by the idea of an optimal or ideal observer (Geisler, 1989). Human performance can be 
compared to predicted optimal performance to determine human efficiency at a given 
task. For example, consider a visual signal-detection task in which the observer’s task is 
to discriminate a small, briefly presented visual pattern vs. a uniform gray field. If you 
place that image on a known place on the observer’s retina, then one can calculate the 
expected number of photons landing on each receptor for the uniform field and for the 
patterned stimulus. The ideal observer, it turns out, calculates a weighted sum of the 
photon catches of the receptors. For dim but not completely dark conditions, the 
resulting predictions are isomorphic to standard signal detection theory as outlined 
above.
For signal detection theory, ideal observers were developed from the very start (Green 
& Swets, 1966). I now develop the ideal observer for standard signal detection theory. 

Decision

“Yes” “No”

State of 
the world

S Hit Miss

N False Alarm Correct Reject

α
P(“yes” |N )

β P(“no” |S )

P(“yes” |S )

P(“no” |N )

P(N )/P(S )
c
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To do this, we need to decide on a “cost function”, that is, what is it that we are trying to 
optimize? I assume the observer is aware of the value of each possible decision 
outcome (hit, false alarm, etc.):

Here, the values of this payoff matrix might be in units of monetary payoff or in units of 
psychological utility. Typically, the values associated with correct answers (hits, correct 
rejects) are positive and the other two values are negative (i.e., losses). I assume again 
that the observer is aware of the design of the experiment and, in particular, the prior 
probability that the signal is present, . The simplest payoff matrix is symmetric, 
resulting in a gain for correct answers (hits and correct rejects) and a loss for incorrect 
answers (false alarms and misses). But, real-world examples often have strongly 
asymmetric payoff matrices. For an airport baggage screener, a false alarm just leads to 
a more careful search of a suitcase and an annoyed and inconvenienced passenger. A 
miss, on the other hand, can lead to an attempt to hijack a plane! The case of a 
radiologist examining a mammogram is similarly asymmetric.
The ideal observer is supplied with a measurement  and maps that measurement to a 
response (“yes” or “no”) by choosing the response that maximizes the expected gain. 
By expected gain I mean the average value the observer will gain if a trial with that 
measurement and response were repeated a large number of times. The expected gain 
of each response depends on the various probabilities and associated values:

(8)

where  denotes expected value. I am computing the expectation of the value of a 
given response (e.g., the expectation of ). This requires an expectation 
because the value depends on the true state of the world, and the evidence only 
specifies the probability of each possible state. The expected value of each response is 
equal to a sum over possible states of the world of the probability of that state given the 
evidence times the value of that response in that world state. The ideal observer 
responds “yes” when . Substituting Eq. 8 into this 
inequality and rearranging, we find that the ideal observer should

(9)

Thus, the ideal observer says “yes” when the posterior odds (the ratio on the left-hand 
side) exceeds a criterion derived from the payoff matrix. This criterion is the excess 

Response

“Yes” “No”

Stimulus
S

N

V(S, “yes”) V(S, “no”)
V(N, “no”)V(N, “yes”)

P(S )

x

𝔼 [V(“yes” |x)] = V(S, “yes”)P(S |x) + V(N, “yes”)P(N |x)

𝔼 [V(“no” |x)] = V(S, “no”)P(S |x) + V(N, “no”)P(N |x),
𝔼[]

V(“yes” |x)

𝔼 [V(“yes” |x)] ≥ 𝔼 [V(“no” |x)]

Say “yes” if 
P(S |x)
P(N |x)

≥
V(N, “no”) − V(N, “yes”)
V(S, “yes”) − V(S, “no”)

Say “no” otherwise.
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value of being correct (rather than incorrect) on no-signal trials (the numerator) divided 
by the excess value of being correct on signal trials.
Making the same substitutions as we did for the MAP decision procedure, the 
maximum-expected-gain decision rule becomes

(10)

This is again a decision rule based on the likelihood ratio. On the right are the prior odds 
(as in Eq. 6) and a second term from the payoff matrix. When no-signal trials are 
prevalent (large ), the likelihood ratio will have to be large to convince the observer 
to say “yes”. Similarly, when the extra value for being correct on a no-signal trial (the 
numerator on the right) is much bigger than the extra value for being correct on signal 
trials (the denominator), the likelihood ratio will have to be large to convince the 
observer to say “yes”.
In summary, the criterion the observer uses determines the observer’s bias for saying 
“yes”. There are two principal ways to affect bias: priors and payoffs. If the observer is in 
a situation in which, on most trials, the signal is present (e.g., you expect your friend to 
show up on that foggy night), and they are aware of this prior distribution (  is near 
one), then it makes sense to be easily swayed to respond “yes”, that is, to set a low 
value of . In contrast, if signals are rare (few patients have this particular disease, 
very few pieces of baggage contain guns or bombs), then perhaps a high (conservative) 
criterion is appropriate. At the same time, decisions have consequences. Allowing a 
bomb onto a plane or sending a sick patient home without treatment can be disastrous, 
indicating a very high cost of a miss for baggage screeners or doctors, suggesting 
instead that a liberal criterion is appropriate. This is the difficult situation faced by airport 
baggage screeners and by radiologists: the payoff matrix implies use of a liberal 
criterion, while the priors suggest a conservative one. In fact, the evidence suggests 
that human observers are ill-equipped to select an optimal criterion when the priors are 
far from 50:50 (Wolfe et al., 2007).
Standardized model 
The model outlined in Fig. 1 is general in the sense that there are parameters for both 
means (  and ) and the common standard deviation ( ). However, all of the 
derivations of the normative model above, and analysis of data below, are based only 
on the response rates (hit rate, false-alarm rate, etc.) and the likelihood ratio. None of 
these values will change with a change of variables for the decision variable involving a 
horizontal shift or a rescaling of the decision variable (an affine transformation, to be 
precise). One standard presentation of signal detection theory, especially for yes-no 
tasks such as I’ve described, imposes a change of variables so that the decision axis is 
in units of z-score for the no-signal distribution. That is, we apply a change of variables 

. This change of variables leads to the following model (Fig. 3):

Say “yes” if 
p(x |S )
p(x |N )

≥
P(N )
P(S )

V(N, “no”) − V(N, “yes”)
V(S, “yes”) − V(S, “no”)

= βopt

Say “no” otherwise.

p(N )

P(S )

copt

μS μN σ

y = (x − μN)/σ
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(11)

Here,  (“d prime”) is a ratio between the strength of the signal and the standard 
deviation of the noise, that is, it is the signal-to-noise ratio. This term appears in many 
engineering disciplines concerning signal processing, where signal strength is usually 
given in units of power and noise in units of variance. That is, the signal-to-noise ratio 

.

INSERT FIGURE 3 ABOUT HERE

Figure 3. Standardized signal detection theory. Once standardized, the separation 
between the distributions ( ) provides a metric for discriminability.

All three decision rules (ML, MAP and maximum expected gain) result in a criterion 
value of the likelihood ratio (which is typically denoted as ). For the standardized 
model, the relationship between the decision variable, , and  is particularly simple, 
showing that a criterion  on likelihood ratio corresponds to a criterion  on the 
decision variable:

(12)

Thus, the optimal criterion on the decision variable is determined by, and monotonically 
increases with the optimal criterion on the likelihood ratio. If one requires a large 
likelihood ratio to say “yes”, that will lead to a large, conservative criterion on the 
decision variable. For the maximum expected gain model (Eq. 10), this implies that

p(y |N ) =
1

2π
exp [−

y2

2 ]  and

p(y |S ) =
1

2π
exp [−

(y − d′ )2

2 ] , where

d′ =
μS − μN

σ
.

d′ 

SNR = d′ 2

d′ 

β
y β

βopt copt

βopt =
p(copt |S )
p(copt |N )

=

exp [−
(copt − d′ )2

2 ]
exp [−

c2
opt
2 ]

= exp [coptd′ −
d′ 2

2 ]

log βopt = coptd′ −
d′ 2

2

copt =
d′ 
2

+
log βopt

d′ 
.
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(13)

Thus, the effects of priors and payoffs on the optimal criterion are additive.
With the standardized representation of signal detection theory (Fig. 3), the main benefit 
of signal detection is made clear: the distinction between discriminability and bias. The 
stronger the signal, the more accurately one can perform the task. In this 
representation, signal strength or discriminability corresponds to the separation between 
the two distributions, . On the other hand, given a fixed amount of information (fixed 

), the bias toward responding “yes” or “no” is reflected in the position of the decision 
criterion  and may be defined for the normative model as , where 

 is the neutral, that is, the maximum-likelihood criterion. The optimal 
criterion, , is determined by the priors and payoffs. If the payoffs are symmetric 
(equal benefits for hits and correct rejects, equal penalties for false alarms and misses), 
then the optimal behavior is MAP. If, in addition, there are equal priors 
( ), the optimal behavior is ML.

Data Analysis: The Experimenter’s Perspective
Parameter estimation from data 
We now examine signal detection theory from the perspective of the experimenter. 
From this perspective, the goal is to use behavioral data to infer something about how 
an observer’s decisions were made. In the case of signal detection theory, an 
experimenter might like to infer the model parameters from data. The full model includes 
details of the stimulus encoding ( ,  and ), the prior ( ) and the payoff matrix 
(the four values of ). We would like estimate these parameters because there is no 
guarantee that observers use accurate estimates of these parameters in formulating a 
decision, that is, that humans behave in accordance with the normative model.
However, given that the general encoding model is equivalent in all of its predictions to 
the standardized model, the only parameters that can be estimated are  (i.e., 

) and the criterion ( ). Experimentally, we know that the prior and payoff 
matrix can affect this criterion, but for a given, fixed set of conditions, all we can 
estimate are  and . There are two degrees of freedom in the data we collect (hit and 
false-alarm rate) and two degrees of freedom in the standardized model (  and ), 
enabling a direct mapping from a pair of hit and false-alarm rates to estimates of  and 
.

Looking again at the standardized model in Fig. 3, we see that the value of  is the 
distance of the criterion to the right of the mean of the noise distribution, and  is the 
sum of that distance plus the distance from the criterion to the mean of the signal 
distribution. In other words:

copt =
d′ 
2

+
log βopt

d′ 

=
d′ 
2

+
1
d′ [log

P(N )
P(S )

+ log
V(N, “no”) − V(N, “yes”)
V(S, “yes”) − V(S, “no”) ] .

d′ 
d′ 

c copt − cML
cML = d′ /2

copt

P(S ) = P(N ) = 0.5

μS μN σ P(S )
V

d′ 
(μS − μN)/σ c

d′ c
d′ c

d′ 
c

c
d′ 
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(14)

where  and  is the cumulative standard 

normal distribution.  is the area to the left of  under the standard bell curve, that is, 
the probability of drawing a random value that is  or less. Thus,  is the z-score 
corresponding to a particular probability, that is, the position on the x-axis corresponding 
to a particular left-hand-tail probability of the standard normal distribution. 
As a data-analysis method, the only change is to replace the theoretical probabilities in 
Eq. 14 with their empirical estimates.  is replaced by the proportion of signal trials 
in which the observer’s response was “yes” and  is replaced by the 
proportion of no-signal trials in which the observer responded “no”, etc.
As an example, suppose that there were 60 signal trials of which 47 were hits and 60 
no-signal trials of which 21 were false alarms. We find that 

. 

.

.
.

There is, however, one possible complication. The  function results in infinite values if 
supplied a probability of zero or one, which can result, for example, if the data contain 
no false alarms or 100% hits. There are two standard procedures for these cases. A 
fairly typical procedure is to take the problematic row in the results table and add 1/2 of 
a trial to both columns. So, if you had zero false alarms and 20 correct rejects (a 
correct-reject rate of 100%), you would process the data as if you had 1/2 trial worth of 

false alarm and 20.5 correct rejects, for a correct-reject rate of . 

However, Hautus (1995) suggests that a less biased procedure is to always add 1/2 trial 
to all 4 elements of the results table. That would modify the results of our example 
above as follows: 

.

.

.
.

d′ = z[P(Hit)] + z[P(Correct reject)]
= z[P(Hit)] − z[P(False alarm)] and

c = z[P(Correct reject)],

z(P) = Φ−1(P) Φ(z) = ∫
z

−∞
exp(−x2 /2)d x

Φ(z) z
z z(P)

P(Hit)
P(Correct reject)

P(Hit) =
47
60

= 0.783

P(False alarm) =
21
60

= 0.35

d′ = z[0.783] − z[0.35] = 0.784 − (−0.385) = 1.169
c = z[P(Correct reject)] = z[1 − 0.35] = 0.385

z

20.5
21

= 97.6 %

P(Hit) =
47.5
61

= 0.779

P(False alarm) =
21.5
61

= 0.353

d′ = z[0.779] − z[0.353] = 0.768 − (−0.379) = 1.147
c = z[P(Correct reject)] = z[1 − 0.353] = 0.379
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The psychometric function, varying signal strength 
So far, we have described a particularly simple experiment in which there are only two 
possible stimuli (signal and noise). Suppose that you are interested in human 
performance at a task as a function of the “strength” of the signal. As an example, 
suppose that you have a theory that human perception is tuned to handle images of 
human faces. You decide to measure detection performance for faces vs. images of 
outdoor scenes as a function of stimulus contrast in the presence of a fixed noisy 
background image. That is, for each target you would like to determine the detectability 
(i.e., ) as a function of stimulus contrast. In advance, you choose a set of, say, 6 
contrast levels for the target, perhaps running the face trials in a separate session from 
the scene trials. In each session, on half of the trials there is no target (and the correct 
answer is “no”), and the other half of the trials are split equally between the 6 contrast 
levels (for all of which the correct response is “yes”). These different types of trials are 
run in random order. This way, if feedback is supplied after each trial, the feedback 
indicates that the correct answer is “yes” and “no” equally often. In this design, there are 
hit rates  for every signal level , but there is a single, shared 
false-alarm rate from the no-signal trials.
This shared false-alarm rate does not complicate the analysis. One can use the  and  
formulas given above (Eq. 14) separately for every stimulus level. Each estimate of  
goes hand-in-hand with a corresponding estimate of . But, the calculation of the 
criterion  only uses the false-alarm rate, which in turn is based only on the trials with no 
signal. That is, the single, shared false-alarm rate is used for the computation of  and 
 for all signal levels. As a result, the criterion  is identical for all signal levels. This is 

important: How would the observer be able to use a different value of the criterion for 
each signal level, when those levels are randomly intermixed and not perfectly 
identifiable by the observer (who only has the noisy measurement  available)? 
Fortunately, this multi-intensity analysis is consistent with the use of a single criterion 
throughout.
The ROC curve 
Signal detection theory makes a specific prediction of the consequences of changing 
one’s criterion for performance in a signal-detection task. Fig. 4 illustrates these 
predictions. The graphs shown here are referred to as “Receiver Operating 
Characteristics” or ROC curves. They illustrate the tradeoff between correct “yes” 
answers (hits) and incorrect “yes” answers (false alarms) as the criterion varies. Each 
curve corresponds to a particular value of signal discriminability ( ). For any given 
value of , a liberal (i.e., low) criterion leads to a large hit rate, but also a large false-
alarm rate (toward the upper-right of the plot), whereas a conservative (i.e., high) 
criterion reduces both hit and false-alarm rates, that is, shifts performance toward the 
lower-left portion of the plot. As  increases, the curves push up to the upper-left corner 
of the plot, i.e., closer to perfect performance (100% hits, 0% false alarms). The 
negative diagonal on this plot corresponds to 

. Looking at Fig. 1C, equal hit and 
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correct-reject rates corresponds to using the criterion where the curves cross, that is, 
the neutral (unbiased) or ML criterion.

INSERT FIGURE 4 ABOUT HERE

Figure 4. ROC curves for four values of . The dashed negative diagonal corresponds to 
predicted performance for a neutral criterion (where the two curves cross as in Fig. 1C), 
so that hit rate is identical to the correct-reject rate (i.e., one minus the false-alarm rate). 
For any value of  the corresponding curve is traced from lower-left to upper-right as the 
criterion  decreases.

Signal detection theory nicely segregates two aspects of a binary, yes-no decision: 
discriminability (how good you are at discriminating signal from noise) and bias (do you 
tend to say “yes” or “no” more often, i.e., more easily given the evidence). In the ROC 
plot, discriminability determines which curve performance will lie on and bias determines 
your operating point along that curve. The curves indicate theoretical, expected 
performance (  and ). With a finite number of trials in a 
dataset, the actual hit and false-alarm rates will deviate from these values, that is, will 
reflect binomial (coin-flip) variability. 
Thus, an alternative approach to estimating  is to do so via the ROC curve. The first 
step is to collect, for a given stimulus, a set of hit rate/false-alarm rate pairs, each 
corresponding to a different value of the criterion. The experimenter can induce the 
observer to adopt different criteria (typically in separate blocks of trials) by simply asking 
them to do so (“Please be conservative about saying ‘yes’ for this block of trials”) or by 
varying the priors (the proportion of signal trials) or payoffs. Alternatively, pairs of hit and 
false-alarm rate can be collected during a single block of trials by expanding the number 
of response alternatives. For example, one can use a set of 5 possible confidence 
ratings as response alternatives. For our face-detection experiment, those possible 
responses would be: 1 = I’m sure a face is not present; 2 = I think a face is not present 
but with low confidence; 3 = I have no idea whether a face is present or not; etc.). Then, 
the data can be analyzed by the experimenter adopting 4 different criteria: (1) treat a 
response of 1 as “no” and responses 2-5 as “yes”; (2) treat a response of 1 or 2 as “no” 
and responses 3-5 as “yes”; (3) treat responses 1-3 as “no” and responses 4-5 as “yes”; 
and (4) treat responses 1-4 as “no” and only response 5 as “yes”. This will yield a set of 
four points for an ROC plot, and the experimenter can then choose the ROC curve that 
best fits the data (Figure 5A).

INSERT FIGURE 5 ABOUT HERE

Figure 5. Estimation of  using confidence ratings and the ROC curve. (A) From five 
detection confidence levels we can derive four points on the ROC curve and determine  
from the best-fitting ROC curve. (B) Plotted on probability (z-score) axes, the ROC curves 
become lines with slope 1.
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To better understand how to think about the “best” ROC curve to fit to a set of hit rate/
false-alarm rate pairs, consider another way of plotting the ROC itself (Fig. 5B). Here, 
hit rate is again plotted as a function of false-alarm rate. But, instead of using linear 
probability axes as in Fig. 5A, I convert each probability to its corresponding z-score, 

. Standard signal detection theory assumes that the signal and noise distributions 
share a common standard deviation. Thus, if you move the criterion one SD rightward 
relative to the noise distribution, you have also moved that criterion one SD rightward 
relative to the signal distribution. This implies that the ROC “curve” on these new axes is 
now a straight line with slope one (Fig. 5B). Thus, to estimate  from a set of pairs of hit 
and false-alarm rates, one can plot the data using the z-score axes and find the best-
fitting line of slope one. However, the data points in this plot have x-values (false-alarm 
rate) and y-values (hit rate) that are both dependent variables, so that standard linear 
regression is inappropriate here. One solution is to use a maximum-likelihood method, 
that is, determine the set of parameters (in our example: 4 criteria and one value of ) 
so that the likelihood of the data ( ) is maximized 
(Dorfman & Alf, 1969).
Deviations of human behavior from the normative model 
As I mentioned, one way to collect data for multiple criteria is to run blocks of trials that 
vary in either priors, , or in payoffs ( , etc.). To do this you will have to 
inform your observer of these values or allow them enough trials to experience the 
current priors and payoffs. For a known value of , the normative theory indicates the 
optimal criterion (Eq. 13). There is, of course, no guarantee that humans perform in an 
optimal manner. In fact, the typical finding (termed “conservatism”) is that when priors or 
payoffs are made asymmetric, the criterion adopted by human observers moves in the 
correct direction away from the neutral ML criterion, but is not moved as far as the 
normative theory predicts (Ackermann & Landy, 2015; Green & Swets, 1966; Healy & 
Kubovy, 1978, 1981; Lee & Zentall, 1966; Maddox, 2002; Ulehla, 1966). One 
explanation of this behavior is that human behavior is, in fact, optimal, but that observed 
conservatism is due to a violation of the assumption of normally distributed noise and 
that, instead, the noise comes from a different form of distribution such as the Laplace 
(Maloney & Thomas, 1991). Another explanation is that humans typically use distorted 
values of probabilities (e.g., of the prior probability of a signal ), leading to 
conservative criterion placement (Zhang & Maloney, 2012). Other violations of 
normative theory include data that contradict the prediction that the effects of changed 
priors and changed payoffs on criterion placement are additive as predicted by Eq. 13 
(Locke, Gaffin-Cahn, Hosseinizaveh, Mamassian, & Landy, 2020) and that the criterion 
is fixed and stable across a block of trials (Norton, Acerbi, Ma, & Landy, 2019; Norton, 
Fleming, Daw, & Landy, 2017).

Forced-Choice Tasks
Thus far, I have described signal detection theory in reference to a particular task, the 
yes-no task, also called single-interval, forced-choice detection, in which a single 
stimulus is provided that is either no signal (N, i.e., a uniform gray screen) or signal (S, 
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that same gray screen with a very low-contrast image of a face). The same underlying 
model can be applied to many other forced-choice tasks. For example, one might be 
interest in the human ability to discriminate image contrast. The observer is asked to 
discriminate between two stimuli with contrasts  and . Both stimuli are easily 
visible and the question is not of detection but, rather, whether their contrasts are 
discriminable. If one assumes that the internal decision variable is corrupted by noise 
with equal variance for the two stimuli, the measurement model of Fig. 1A still applies, 
even though we deem this a discrimination, rather than a detection task. We can 
arbitrarily treat  as “N” and  as “S”, so that, for example, when stimulus contrast  is 
displayed and the observer responds that it is , we treat that response as a false 
alarm. Otherwise, the same theory and data analysis apply equally to single-interval, 
forced-choice discrimination as apply to detection.
Signal detection theory can be applied to other tasks, such as two-alternative forced 
choice (2AFC). In this task, there are two stimuli presented on each trial, for example a 
noise pattern vs. a noise pattern plus a low-contrast image of a face. The observer’s 
task is to identify which stimulus had the signal (i.e., the face). The two stimuli could be 
presented in different spatial locations (e.g., left and right of visual fixation) or in different 
temporal intervals, sequentially. Typically, psychophysicists prefer this task, compared to 
the yes-no task, because this task is often described as “bias-free”. That is, the 
participant can’t be biased to say “yes”, because that’s not one of the response options 
and there is always a signal presented. However, they can be biased to say “2nd 
interval” and, in fact, data indicate that participants often do have an interval bias 
(Yeshurun, Carrasco, & Maloney, 2008). The nomenclature for these different 
experiments varies, but the theory is the same: the observer has two noisy 
measurements (  and , e.g., from the first and second interval) and must decide 
which contained the signal. The rational decision procedure (assuming that the signal is 
equally likely to appear in either location or temporal interval, as is usually the case for 
this task) is to select the interval that led to the larger measurement.
On each trial, the observer has a pair of measurements  and thus the model for 
this experiment comprises a two-dimensional space of potential measurements (Fig. 6). 
A trial’s measurement pair is distributed now as a bivariate Gaussian and we assume 
the measurements in the two intervals are independent and both have standard 
deviation equal to one (hence the distributions are shown as a set of concentric circles 
in Fig. 6). We again adopt the standardized model, so that a no-signal measurement is, 
on average, zero. For the typical, single-interval, yes-no task where we only have one 
measurement, , and the observer must say “yes” or “no”, we denote the 
discriminability as . For the forced-choice task, the mean pair of measurements for 
trials in which the signal is in interval one is  and for interval two it is .

INSERT FIGURE 6 ABOUT HERE

Figure 6. Two-alternative forced choice (2AFC). In each trial there are two stimuli, leading 
to measurements  and . A no-signal measurement is, on average, zero. A 
measurement of a signal is, on average, equal to , that is, equal to the value of  
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one would have on a single-interval, yes-no task. The concentric circles represent the 
bivariate distribution of . The distance between the two distribution means, , 
governs performance in the 2AFC task.

We can treat the forced-choice task as a signal-detection task by, for example, treating 
a trial in which the signal is in interval 1 as a “no-signal trial”, and when the signal 
appears in interval 2 we treat this as a “signal” trial (with the corresponding definitions of 
hit, false alarm, etc.). Performance in the forced-choice task is governed by the 
separation between these two bivariate Gaussian distributions. We denote performance 
(i.e., discriminability) in the forced-choice task as . From the geometry of Fig. 6, it is 
clear that . Note that typical 2AFC behavioral data do not satisfy the 
assumptions of ideal behavior as just described. Data often indicate that people do not 
place a symmetric criterion between interval 1 and 2, nor do results indicate equal 
detectability of the stimulus in interval 1 and the stimulus in interval 2 (Yeshurun et al., 
2008).
When the signal is in interval 2, the observer will be correct when  and similarly, 
when the signal is in interval 1, the observer will be correct when . Thus, the 
probability of being correct is the probability of the set of all pairs of measurements that 
satisfy either inequality (by symmetry, they are identical), so that:

. (15)

Here’s a useful, important and fairly unobvious fact (Fig. 7A): for any given value of 
, the value of  is equal to the area under the corresponding ROC curve for the 

yes-no detection task! This is clearly true at the extremes. When , the observer 
has no information about which stimulus is which and is forced to guess, so that 

. The corresponding “area under the ROC” (often abbreviated AUROC or, 
simply, the area under the curve, AUC) is the area under the main diagonal (Fig. 4), that 
is, . Similarly, when  is effectively infinite, 2AFC performance becomes perfect 
and the area under the ROC is the entire area of the ROC plot, that is, one.

INSERT FIGURE 7 ABOUT HERE

Figure 7. Demonstration that the area under the ROC equals predicted 2AFC 
performance. (A) The area is the sum of differential areas with width equal to the 
probability of a correct reject for a criterion that leads to the hit rate for that rectangle. 
(B) The height  of the rectangle in (A) is equal to the area of the rectangle shown 
here.

In between these extremes, the fact that  is equal to the area under the 
corresponding ROC curve is not obvious. Here is a sketch of the proof. Consider the 
rectangle outlined in Fig. 7A. Area under the ROC is computed by summing the areas of 
such rectangles. The rectangle’s height is an infinitesimal portion of the y-axis, that is, it 
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is notated as . The width of the rectangle is one minus the x value at that 
position on the ROC curve, that is, it is . The 
full area is the sum (well, integral) over all such rectangles. Those rectangles can be 
parameterized by the criterion  that results in the point on the ROC that intersects the 
rectangle. Fig. 7B shows that a differential amount of the y-axis in Fig. 7A corresponds 
to a differential amount of area under the signal distribution ( ). That is, 

. Combining these,

(16)

Thus, discriminability, instantiated by the value of , inextricably ties predictions of 
performance in yes-no and 2AFC tasks.

Alternative Models
The literature includes many alternatives to standard signal detection theory as a model 
of detection and discrimination performance. One class of such models is the set of so-
called threshold models. There are several types of threshold models, and I’ll illustrate 
one here to give an idea of how this class of models works. I assume that the observer 
does not have access to the noisy measurement directly, but rather, these noisy 
measurements result in one of two internal states, “detect” and “no-detect” (possibly 
through a version of signal detection theory to which the observer does not have 
conscious access). On S trials, the detect state is entered with probability  and 
otherwise the no-detect state results. On N trials, the detect state is entered with 
probability . Thus, if the observer merely reports the current state, saying “yes” in 
the detect state and “no” otherwise, the ROC will have one point at coordinates 

 (Fig. 8, filled circle).
To generate a full ROC contour, one allows for randomness in the response. Suppose 
the observer doesn’t trust their internal state. For example, when they are in the no-
detect state, they occasionally decide to say “yes” despite being in the “no-detect” state. 
Depending on how often they make this decision, performance will lie somewhere along 
the upper line in Fig. 8. Similarly, if the observer instead doesn’t always trust the internal 
“detect” state and occasionally says “no” despite being in that state, their behavior will 
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lie along on the lower line in Fig. 8. The result of this set of behaviors (mistrust of either 
the detect or the no-detect state) is an ROC contour consisting of two straight lines, 
rather than the smooth curve (Fig. 4) resulting from standard SDT.

INSERT FIGURE 8 ABOUT HERE

Figure 8. The ROC curve resulting from a threshold theory in which the detect state is 
entered on no-signal trials with probability  and with probability  on signal trials.

A generalization of standard signal detection theory drops the assumption of equal 
variances for the N and S measurement distributions. For most intensive stimulus 
parameters (e.g., luminance, size, weight, speed, loudness, etc.) the just-noticeable 
difference (the difference in intensity between a base stimulus and an increment leading 
to a criterion discrimination performance such as ) is approximately proportional 
to the intensity of the base stimulus, which is known as Weber’s Law. There are many 
combinations of stimulus encoding and noise that are consistent with Weber’s Law 
(Zhou, Duong, & Simoncelli, 2024). One model consistent with Weber’s Law drops the 
equal-variance assumption and instead suggests that noise standard deviation grows 
approximately proportional to stimulus intensity.

INSERT FIGURE 9 ABOUT HERE

Figure 9. SDT with unequal variances. (A) The measurement distribution  has a 
standard deviation three times larger than . Note that  is more likely than  
both to the right of  and to the left of . (B) If only a single criterion is used, a non-
convex ROC curve results. (C) Plotted on probability (z-score) axes, this ROC curve is a 
straight line with slope equal to the ratio of the noise and signal standard deviations 
(here: 1/3).

Fig. 9A illustrates an unequal-variance context in which the stronger stimulus has higher 
variance, consistent with this model of Weber’s Law, such as might result from, for 
example, discrimination of image contrast. One can still posit that observers perform 
this task by setting a single criterion  and responding “yes” when the measurement 
exceeds this criterion. For the example in Fig. 9A, this leads to the asymmetric ROC 
curve shown in Fig. 9B. In Fig. 9A, the  distribution has a standard deviation three 
times as large as the  distribution. Thus, if we move  one standard deviation to the 
right relative to the  distribution, we will have moved that criterion only one-third of a 
standard deviation to the right relative to the  distribution. As a result, if I plot the ROC 
curve with the axes scaled as z-scores as I did in Fig. 5B, each shift to the right by one 
will lead to a shift upward of 1/3 (in z-score for the false-alarm and hit rates 
corresponding to the changed criterion). Thus, I will again have an ROC that is a 
straight line, but the slope is no longer one but, instead, is equal to the ratio of the two 
standard deviations (here: , Fig. 9C).
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We pointed out above (Observer’s perspective and the normative model) that the 
optimal decision rule, taking payoffs and priors into account, is to impose a threshold on 
the likelihood ratio. That derivation only used the two likelihoods and never made 
reference to the signal detection theory assumptions of equal variance or Gaussian 
measurement distributions. An ideal decision-maker bases decisions only on likelihood 
ratio, in other words, the likelihood ratio is a sufficient statistic for this decision. 
Inspecting Eq. 10, if we are in a situation with equal priors ( ) and 
equal payoffs (the value of being correct on noise trials is the same as on signal trials), 
then . That is, the criterion should be placed where the signal and noise 
measurement distribution curves cross. For unequal signal and noise variances, the 
curves cross in two places (Fig. 9A) and thus the optimal decision-maker doesn’t place 
a single criterion, saying “yes” when that criterion is exceeded. Rather, the optimal 
strategy is to say yes when the measurement exceeds a high criterion  or falls below 
a second, low criterion , because very low values of the measurement are more likely 
to occur on signal than on noise trials.

INSERT FIGURE 10 ABOUT HERE

Figure 10. Signal detection theory with a discrete measurement distribution (Poisson).

Having noticed that Eq. 10 can be applied to any pairs of distributions, we can also drop 
the assumption that the two distributions are Gaussian. As an example, Fig. 10 shows 

 and  distributions that are Poisson-distributed, differing in the expected number of 
counts. This is a reasonable model for a decision based on the number of photons 
caught by a collection of rod photoreceptors in the retina or based on the number of 
action potentials from a single neuron. Again, for equal priors and symmetric payoffs, 
the optimal decision is maximum likelihood: pick the stimulus based on the higher curve 
corresponding to the current measurement (here, resulting in a criterion between one 
and two counts).

Applications to Neural Data
The same tools I have outlined may also be applied in situations in which we have 
empirically measured distributions and choose not to make an assumption of a 
particular distributional form (Gaussian, Poisson, etc.). A particularly well-known 
example is the application to neural responses to visual motion in cortical area MT 
(Britten, Shadlen, Newsome, & Movshon, 1992; Newsome, Britten, & Movshon, 1989; 
Salzman, Britten, & Newsome, 1990; Salzman, Murasugi, Britten, & Newsome, 1992), 
although the same ideas can be applied to any discrimination based on neural 
responses.
Newsome and colleagues recorded from single neurons in area MT of the macaque 
monkey while the monkey viewed a random-dot motion display in which a subset of the 
dots moved in either the preferred direction of the neuron or in the opposite (anti-
preferred or null) direction. The other dots moved in random directions. Across trials, 
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they varied the stimulus coherence, the fraction of dots that moved together. They 
included a zero-coherence condition (purely random motion). Each stimulus was 
presented many times, resulting in a histogram of the number of action potentials from 
the neuron summed over the stimulus duration, one histogram for each coherence level 
and motion direction. At the same time, the monkey was awake and performing a 
discrimination task on motion direction, effectively deciding whether the stimulus moved 
in the currently recorded neuron’s preferred or null direction. The tools I’ve discussed 
allowed Newsome and colleagues to determine what information a single neuron had 
concerning the stimulus being displayed (the neurometric function) as well as about the 
decision the monkey was about to make (choice probability).
A psychometric function for a task such as this is a measurement of behavioral 
performance as a function of a stimulus variable. Here, that could be, for example,  for 
discriminating leftward vs. rightward motion as a function of motion coherence in a 
forced-choice task. The notion of a neurometric function is to generalize this concept 
from behavior to the information contained in neural responses. Here, the noisy 
measurement is the spike count from the neuron. The “behavior” is generated by an 
idealized decision-maker that bases its choice on the neural spike counts in response to 
each of the stimuli to be discriminated. 
Consider the two histograms in Fig. 11A (these are artificial data, but give the basic 
idea). The histogram on the left represents responses “recorded” from a neuron in 
response to a 10% coherence stimulus moving in the null direction, and the histogram 
on the right shows the responses at this coherence for stimuli moving in the preferred 
direction. We could pick an arbitrary criterion (such as where the curves cross) and 
compute a hit rate (the fraction of preferred-direction responses that exceed the 
criterion) and false-alarm rate (the fraction of null-direction responses that exceed the 
criterion) and then compute  from these two rates. However, these histograms are 
empirical distributions, that is, they are a noisy representation of the true, underlying 
distributions that would result from an infinite number of trials. It makes more sense to 
use all the information we have in these histograms to compute a measure of the ability 
of this neuron to discriminate these two stimuli. What Newsome and colleagues 
proposed is to use the same trick as described above for using confidence ratings. 
Place a “criterion” at 1 action potential and compute hit and false-alarm rates based on 
that criterion. Repeat with the criterion equal to 2, 3, 4, … spikes. When you are done, 
you have produced a piecewise-linear ROC curve (Fig. 11B). Discrimination 
performance can be summarized using the area under the ROC. Recall that the area 
under the ROC is equivalent to performance in a 2AFC task. Here, that task is: I give 
you a random sample from the left-hand histogram and a random sample from the right-
hand histogram. You decide that the sample drawn from the preferred direction’s 
distribution is the sample with more action potentials. The area under the ROC is the 
predicted proportion of correct decisions in that 2AFC task. Finally, this exercise can be 
repeated with the pairs of neural-response histograms corresponding to each 
coherence level used in the experiment. The result is a neurometric function: predicted 
direction-discrimination performance as a function of stimulus coherence (Fig. 11C), 
yielding a description of the information content in a single neuron’s firing rate for this 
task.

d′ 

d′ 



21

INSERT FIGURE 11 ABOUT HERE

Figure 11. Signal detection theory applied to neural spiking data. (A) Simulated 
histograms of the number of action potentials (spikes) in response to a brief random-dot 
motion stimulus moving in either the neuron’s preferred direction (white) or the opposite 
(null) direction (gray). (B) ROC curve derived from the data in (A). (C) Neurometric 
function: the area under the ROC (as in panel B) as a function of motion coherence. 
(D) Histograms of spike counts conditioned on the monkey’s response for a zero-
coherence motion stimulus, which may be analyzed as above to determine “choice 
probability”.

The second question that Newsome and colleagues asked was “How informative is this 
neuron about the behavior of the animal?” The approach to this question was quite 
similar. Obviously, when stimulus coherence was high, response variability was low (the 
animal was correct most of the time). The highest response variability was when the 
stimulus had no information at all (zero coherence). Fig. 11D again shows two 
histograms of neural responses, but this time both (again, simulated here) are 
responses to completely random, zero-coherence motion stimuli. However, this time the 
histograms are conditioned on the monkey’s response. The left-hand histogram 
corresponds to when the animal decided the stimulus moved in the neuron’s null 
direction, and the right-hand histogram shows neural responses when the monkey 
decided the stimulus moved in the neuron’s preferred direction. In both cases, the 
stimuli themselves were completely random and uninformative. Given the two 
histograms, we can compute the areas to the right of each possible criterion, yielding hit 
and false-alarm rates for the task of deciding what behavioral response the monkey 
made given knowledge only of this neuron’s response. From these rates we can 
construct an ROC and compute the area under the ROC, which they called the choice 
probability for this neuron. Choice probability is a measure of how useful this neuron is 
in discriminating what behavioral choice the monkey subsequently made. This approach 
shows the usefulness of the ROC and, in particular, of the area under the ROC as a 
nonparametric analysis method for summarizing discrimination performance.

Extensions to Metacognition
In this chapter, I have discussed signal detection theory solely with regard to perceptual 
decisions: Is the signal there or not? Are the dots moving to the right or left? Etc. 
However, having completed a task, humans also typically have a feeling of how 
successfully they carried out the task. In the case of binary decisions (the “first-order” 
task), an experimenter can ask the observer something about their estimate of the 
probability that decision was correct (the “second-order” task). Reasoning about one’s 
own thoughts and actions is called metacognition.
There are many sources of information that one can use to inform a metacognitive 
judgment. For a random-dot display, there are stimulus cues that are correlated with the 
quality of the stimulus, such as the perceived randomness or inconsistency of dot 
motion directions, which could inform a judgment of confidence in the first-order dot-
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direction decision. There are also aspects of one’s own behavior that could inform a 
decision, such as having low confidence if one’s own reaction time for the first-order 
task was long or basing confidence on the previous rate of success in the task. In 
addition, one can use the elements of signal detection theory itself to form a second-
order judgment.

INSERT FIGURE 12 ABOUT HERE

Figure 12. SDT and metacognition. The observer first discriminates between stimuli  
and  and then reports whether they have low or high confidence in that judgment. 
(A) Criterion  determines the discrimination decision. Neighboring criteria  and 

 determine the confidence response. The denoted areas correspond to high-
confidence  reports when the stimulus was indeed  (a second-order hit) and low-
confidence   reports when it was, in fact,  (a second-order correct reject). 
(B) Sweeping  across all possible values yields a second-order ROC, which can 
be compared to confidence data.

Consider again the signal-detection experiment in which the observer is asked to 
discriminate stimulus  (a noise pattern) from  (a noise pattern plus a low-contrast 
face) and subsequently indicate whether that response was made with low or high 
confidence (Fig. 12A). The theoretical setup is that of standard signal detection theory 
with two unit-variance measurement distributions separated by  (i.e., first-order 
discriminability) and the observer’s response bias is represented by the first-order 
criterion  (here, the neutral criterion is indicated). If a measurement lies quite close to 
this first-order criterion, the likelihood ratio and the posterior odds will be close to one, 
so it makes sense to have low confidence; if the measurement is far from the criterion, 
this justifies increased confidence. Thus, a simple model of the metacognitive judgment 
is that the observer adopts second-order criteria (one for each possible first-order 
response:  and ) and responds “high confidence” if the measurement is 
farther from the first-order criterion than the corresponding second-order criterion.
Consider the case when the first-order response is “S2”. Thus, the measurement lies to 
the right of . For the second-order task (the confidence response), there are two 
possible stimuli that could have appeared (corresponding to first-order hits and false 
alarms) and two possible confidence responses. When the stimulus was, in fact, , the 
response “S2” was correct. If the confidence response was “high”, we might say that 
high confidence was justified (because they were correct) and call that a second-order 
hit. When the stimulus was , then high confidence was unjustified, and we can call 
that a second-order false alarm, but if confidence was low, that is a 2nd-order correct 
reject.
The first-order criterion  is estimated using the first-order hit and false-alarm rates. 
Given the estimated values of  and , and any possible value of the second-order 
criterion , the predicted probabilities of 2nd-order hits and false alarms can be 
calculated. These are the probability that, for each stimulus, the measurement exceeds 
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 given that it already exceeds . Varying  over the entire range yields a 
2nd-order ROC curve (Fig. 12B). The measured second-order hit and false-alarm rates 
are not likely to land on this theoretical ROC curve. Maniscalco and Lau (2012) 
proposed a measure of metacognitive sensitivity (how sensitive you are to your own 
stimulus information and the quality of your first-order judgment) by computing what 
they called meta-  (for a comprehensive summary of metacognition metrics, see 
Rahnev, 2024). Any given pair of  and  values results in a second-order ROC curve. 
Maniscalco and Lau defined meta-  as the value of  that, if paired with the criterion 
“corresponding to” , yields the observed pair of second-order hit and false-alarm 
rates. One has, of course, to determine what you mean by the corresponding first-order 
criterion, since you are now treating the problem as if the two distributions are a 
different distance apart. The sensible solution, proposed by Maniscalco and Lau, is to 
use the criterion “ ” along with the new value of  so that the corresponding value of 
the likelihood ratio  for that criterion is the same as the value  derived from the first-
order responses.
The literature on metacognition has many other definitions of metacognitive sensitivity. 
The development of the meta-  metric was, among other things, an attempt to develop 
a metric that estimates metacognitive sensitivity independent of (metacognitive) bias 
and first-order discriminability. However, meta-  tracks first-order sensitivity. That is, if 

 is high, meta-  is likely to be high as well. Thus, in order to derive a metric for the 
quality of metacognition itself, Maniscalco and Lau proposed that researchers report the 
M-ratio ( ), that is, the fraction of the information in the first-order judgment 
that is effectively used in the second-order confidence judgment.

Discussion
In the 70 years (as of this writing) since signal detection theory was introduced, it has 
become the standard model and data-analysis technique for detection and 
discrimination experiments in a wide variety of research areas, often far from the 
sensory experiments in which it was first described. It allows the researcher to 
separately estimate observer sensitivity ( ) and response bias (  or ). Through the 
careful estimation of the ROC curve, it also allows the experimenter to test the 
underlying assumptions (continuous decision variable, equal variances, Gaussian 
distributions). Extensions of the method to other distributions have allowed the method 
to be extended to discrete distributions as well, such as are found in single-unit neural 
measurements.
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Figure 1. Standard signal detection theory. (A) The probability distribution for the 
evidence  on no-signal (N) and signal trials (S)  with means  and  and common 
standard deviation . (B) The likelihood values  and  corresponding to a 
measured evidence value . (C) The maximum-likelihood observer sets a criterion  
where the curves cross and says “yes” when the decision variable exceeds that 
criterion. (D) The likelihood ratio ( ) increases monotonically with . Any 
criterion on likelihood ratio corresponds to a criterion on the decision variable . The 
optimal criterion, for equal priors and payoffs,  (where the curves cross in panel C) 
corresponds to a criterion on likelihood ratio, .
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Figure 2. Criterion and decision outcomes. (A) When a signal was presented, these 
areas represent the probabilities of a hit and a miss. (B) When no signal was presented, 
these areas represent the probabilities of a false alarm and a correct reject. (C) The 
criterion  indexes the observer’s bias to say “yes”. Low values lead to a liberal bias: a 
high hit rate and few correct rejects. (D) Moving the criterion rightward leads to a 
conservative bias: a reduced hit rate, but increased correct rejects.
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Figure 3. Standardized signal detection theory. Once standardized, the separation 
between the distributions ( ) provides a metric for discriminability.d′ 
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Figure 4. ROC curves for four values of . The dashed negative diagonal corresponds 
to predicted performance for a neutral criterion (where the two curves cross as in 
Fig. 1C), so that hit rate is identical to the correct-reject rate (i.e., one minus the false-
alarm rate). For any value of  the corresponding curve is traced from lower-left to 
upper-right as the criterion  decreases.
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Figure 5. Estimation of  using confidence ratings and the ROC curve. (A) From five 
detection confidence levels we can derive four points on the ROC curve and determine 

 from the best-fitting ROC curve. (B) Plotted on probability (z-score) axes, the ROC 
curves become lines with slope 1.
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Figure 6. Two-alternative forced choice. In each trial there are two stimuli, leading to 
measurements  and . A no-signal measurement is, on average, zero. A 
measurement of a signal is, on average, equal to , that is, equal to the value of  
one would have on a single-interval, yes-no task. The concentric circles represent the 
bivariate distribution of .
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Figure 7. Demonstration that the area under the ROC equals predicted 2AFC 
performance. (A) The area is the sum of differential areas with width equal to the 
probability of a correct reject for a criterion that leads to the hit rate for that rectangle. 
(B) The height  of the rectangle in (A) is equal to the area of the rectangle shown 
here.
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Figure 8. The ROC curve resulting from a threshold theory in which the detect state is 
entered on no-signal trials with probability  and with probability  on signal trials.PFA PHit
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Figure 9. SDT with unequal variances. (A) The measurement distribution  has a 
standard deviation three times larger than . Note that  is more likely than  
both to the right of  and to the left of . (B) If only a single criterion is used, a non-
convex ROC curve results. (C) Plotted on probability (z-score) axes, this ROC curve is a 
straight line with slope equal to the ratio of the noise and signal standard deviations 
(here: 1/3).
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Figure 10. Signal detection theory with a discrete measurement distribution (Poisson).
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Figure 11. Signal detection theory applied to neural spiking data. (A) Simulated 
histograms of the number of action potentials (spikes) in response to a brief random-dot 
motion stimulus moving in either the neuron’s preferred direction (white) or the opposite 
(null) direction (gray). (B) ROC curve derived from the data in (A). (C) Neurometric 
function: the area under the ROC (as in panel B) as a function of motion coherence. 
(D) Histograms of spike counts conditioned on the monkey’s response for a zero-
coherence motion stimulus, which may be analyzed as above to determine “choice 
probability”.
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Figure 12. SDT and metacognition. The observer first discriminates between stimuli  
and  and then reports whether they have low or high confidence in that judgment. 
(A) Criterion  determines the discrimination decision. Neighboring criteria  and 

 determine the confidence response. The denoted areas correspond to high-
confidence  reports when the stimulus was indeed  (a second-order hit) and low-
confidence   reports when it was, in fact,  (a second-order correct reject). 
(B) Sweeping  across all possible values yields a second-order ROC, which can 
be compared to confidence data.
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