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Section 4:
Summary Statistics & Probability

Statistics is the science of learning from experience, especially ex-
perience that arrives a little bit at a time. The earliest information
science was statistics, originating in about 1650. This century has
seen statistical techniques-become the analytic methods of choice
in biomedical science, psychology, education, economics, communi-
cations theory, sociology, genetic studies, epidemiology, and other
areas. Recently, traditional sciences like geology, physics, and as-
tronomy have begun to make increasing use of statistical methods
as they focus on areas that demand informational efficiency, such as
the study of rare and exotic particles or extremely distant galaxies.

Most people are not natural-born statisticians. Left to our own
devices we are not very good at picking out patterns from a sea
of noisy data. To put it another way, we are all too good at pick-
ing out non-existent_patterns that happen to suit our purposes.
Statistical theory attacks the problem from both ends. It provides
optimal methods for finding a real signal in a noisy background,
and also provides strict checks against the overinterpretation of
random patterns.

[Efron & Tibshirani, 1998]

Some historical context

* 1600’s: Early notions of data summary/averaging
¢ 1700’s: Bayesian prob/statistics (Bayes, Laplace)
¢ 1920’s: Frequentist statistics for science (e.g., Fisher)

* 1940’s: Statistical signal analysis and communication,
estimation/decision theory (e.g., Shannon, Wiener, etc)

* 1950’s: Return of Bayesian statistics (e.g., Jeffreys, Wald,
Savage, Jaynes...)

* 1970’s: Computation, optimization, simulation (e.g,. Tukey)

* 2000’s: Machine learning (statistical inference with
large-scale computing + lots of data)

¢ Also (since 1950’s): statistical neural/cognitive models!




Statistics as summary description

0.1, 45, 2.3, 08, -1.1, 3.2, ...

“The purpose of statistics is to replace a quantity of data
by relatively few quantities which shall ... contain as much
as possible, ideally the whole, of the relevant information
contained in the original data”

- R.A. Fisher, 1934

Standard descriptive statistics

“Dispersion”

Data

“Central tendency”

Descriptive statistics: 1D
The most common measures of central tendency & dispersion:

e Sample mean minimizes the squared error
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Descriptive statistics: generalizations

More generally, can measure dispersion with

an “L, norm”: P
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Different p values give different measures of central tendency:
e p =2 :mean (standard choice)
e p=1 :median
e p— 0 :mode (location of maximum)

e p — 00 : midpoint of range

Descriptive statistics: 2-D
® Data points: d,, = {I”} , nell...N]
Yn

@ Sample mean: the vector that minimizes
average squared distance to data points:
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Descriptive statistics: 2-D
® Data points: d,, = {I”} , nell...N]
Yn

@® Sample mean:

N
" 1 7 = 1 7
Mq = argmin E HdnchZ:N En dp

n=1

O Sample (total) variance:
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Descriptive statistics: 2-D

» Sample mean, in direction 4
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* Sample variance, in direction 4
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Descriptive statistics: 2-D
 Sample mean, in direction 4
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* Sample variance, in direction 4
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Descriptive statistics: multi-D

@ Data points: matrix D (N data vectors in columns)

® Sample mean:
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vector of IV ones

* Sample variance, in direction @
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As we vary direction 1, what does the sample variance do?




Recall: rewrite || D*7a||?> with SVD D*T =USVT ..
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Descriptive statistics: multi-D

@ Data points: matrix D (/N data vectors in columns)

@ Sample mean, in direction 4:

sample mean, 7d
(7 Sample variance, in direction
= 3 (@~ a)" = D el
“ N — N
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Principal Component Analysis (PCA)

The shape of a data cloud can be summarized with an ellipse
(ellipsoid), centered around the mean, using a simple procedure:

(1) Subtract mean from all data points (re-centers data around origin)
(2) Collect centered data vectors in columns of a matrix, D*
(3) Compute the SVD: DT =ysyT

or use covariance matrix Oy = D*D*T = T

A, square and diagonal, elements Ak
* Columns of V are the principal components (axes) of the ellipsoid,
singular values s, (or V Ak) are the corresponding principal radii.
* Ellipse volume is proportional to product of s;’s.

* Total variance is equal to sum of Ak’s.




Olympic gold medalists
(Paris, 2024)

Yemisi Ogunleye (Germany)

Arshad
Nadeem
(Pakistan) 4

3D geometry:
shotput, discus, javelin...

Eigenvectors/eigenvalues
¢ An eigenvector of a matrix is a vector that is rescaled by the matrix
(i.e., the direction is unchanged)
e The corresponding scale factor is called the eigenvalue

e For covariance matrix Cy = D*D*T = VAV the columns of V/
(denoted ¥y,) are eigenvectors, with corresponding eigenvalues A:

Cyin, = VAV iy,

=VAé

= A Vég

= A\ 0%

e For LSI system L, the eigenvectors are complex exponentials:
Ly, = FRFT%), = i,

F is the Fourier transform, Uk the kth Fourier basis function, " the
kth entry of diagonal matrix R containing F.T. of impulse response

Affine transformations

If En =M (Jn — d) (translate, then rotate-stretch-rotate)

then 1y = M (Mg — @) (mean and covariance transform
according to simple rules)

Cy=MCyMT

Standard case: “re-center” and “normalize” the components:
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Sy (Pearson
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0 oSy g [on board]




Correlation (r) captures dependency

1 0.8 0.4 0

... but not slope!

Regression (revisited)
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Optimal regression line slope:
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Probability: an abstract mathematical
framework for describing random quantities.

Statistics: use of probability to summarize,
analyze, and interpret data. Fundamental to
all experimental science.
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Univariate Probability (outline)

® distributions: discrete and continuous
® cxpected value, moments
® transformations: affine, monotonic nonlinear

e cumulative distributions. Quantiles, drawing
samples

P(x)

Probability distributions
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Example distributions

a not-quite-fair coin roll of a fair die sum of rolls of
(Bernoulli) (uniform) two fair dice
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[Figure: Sean Owen, Cloudera Engineering]

Expected value (for a discrete random variable)

K
pe =E(x) = xp Pla)
k=1

a weighted sum over the discrete values

k=1

Sample average: an estimate of the expected value:
1 N
‘f_'(g;) B N Z f(xn) (sum over data samples)
n=1

Sample average converges to expected value as one gathers more data. ..




A note on notation

* We have, and will continue to use the notation for a “sample
mean” (X) and a “sample standard deviation” (s) or variance

(s?).

¢ Statistics makes a distinction between these sample values
and the corresponding “population” values of mean () and

variance (62).

Connecting statistics and probability
(limit of infinite data)

) probability
data —  histogram distribution
{x,} {cw Iy P

Expected value (continuous random variable)

) probability
data —  histogram distribution
{x,} il S

{center, normalized height}
of kth bin

I=—) x, I~ chhszTiz ﬂx=JxP(x) dx
k




Expected value (continuous)

E(z) = /x p(z) dx [“mean”, 1]

E(z?) = /m2p(x) dx [“second moment”, m:]

B (e =w?) = [ = w? pla) de [“varianee”, o°]
_ / 22p(z) dz — 12 [m> minus p?]

E(f(z)) = /f(gc) p(z) dx [“expected value of f™]

Note: expectation is an integral, and thus linear, so:

E(af(z) +bg(x)) = aE (f(2)) + bE (g9(2))

Transformations of scalar random variables

Y=aX+b “affine” (linear plus constant)
Analogous to sample mean/covariance:

uy=EQX)=aEX)+b=auy+b

o =E ((Y—yy)z) =E ((aX— a,ux)2> = a’c}

1 y—>b
Full distribution:  py(y) = — py
a a

Y=g(X) (assume g is “monotonic” - i.e., derivative > 0)
P )
py(V)=—7—77
g (g (y))
PW) 9(x)

N




Cumulative distributions
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Quantiles
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Drawing samples - continuous

- 1
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Multi-variate probability (outline)

* Joint distributions

* Marginals (integrating)

* Conditionals (slicing)

* Bayes’ rule (inverse probability)

* Statistical independence (separability)
* Mean/Covariance

¢ Linear transformations




Joint probability - discrete
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Conditional probability

A&B
Neither A nor B
p(A| B) = probability of 4 given that B is asserted to be true = %
P

Conditional probability - discrete
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Joint distribution (continuous)

p(z,y)

Marginal distribution

150

p(z,y)

o ll'vll

p(x) = /p(af,y)dy Zoots

0.01

0.005]

%O 100 150
X

Conditional distribution

p(z,y) p(zly = 90)

50 100 150
X




Conditional distribution

150
S
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)
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paly = 90) = pla,y = 90) / / D,y = 90)de

G
More generally: \‘

p(*ﬂ?l) = p(.l’, y)/p(y) slice joint distribution normalize (by marginal)

Bayes’ Rule

LI An Effay towards folving a Problem in
the Doétrine of Chances. By the late Rev.
My. Bayes, F. R. 8. communicated by Mr.
Price, in a Letter to John Canton, A. M.

F.R.S.

Dear Sir,
Rexd Dec. 23, ) Now fend you an effay which I have
1763 found among the papers of our de-
ceafed friend Mr. Bayes, and which, in my opinion,
has great merit, and well deferves to be preferved.

p(z|y) = p(ylx) p(z)/p(y)

(a direct consequence of the definition of conditional probability)

Bayes’ Rule

A&B

p(A| B)= probability of 4 given that B is asserted to be true = %
p

(A& B)= p(B)p(4|B)
=p(A)p(B|4)

41y PBLAPD
= pa|B)= =0




Conditional vs. marginal

150 0.035
0.03 P(x| Y=120)
025

S0
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& 001 P(x)

0.005
% 100 150
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In general, the marginals for different Y values differ.

When are they they same? In particular, when are all
conditionals equal to the marginal?

Statistical independence

100,

90|

Random variables X and Y are statistically
independent if (and only if): >

p(x,y)=pX)p(y) V=x,y

%0%80 90 100 110 120
x

(note: for discrete distributions, this is an outer product!)

Independence implies that a// conditionals are equal to the
corresponding marginal:

p(x|y)=p(x,y)/ p(y)=p(x) Vx,y

Mean, covariance, affine transformations
ForRV. X, iy =EX), Cy=E (()_(’— T(X - VX)T)

ForR\V. Y = M(X — a),
analogous to results for sample mean/covariance:
Ty =E(MX -)
-M ([E(Y) - a))
=M (7y—a)
Gy = E(MX = B (X - 7))
= ME((X = B)(X = )" ) MT

=MCyMT"




Special case: Sum of two RVs

- 77X

Let Z=X+Y or Z=1 [Y]
Hz = Hx + Hy

2_ 2 2
0, = 0y + 20xy + 0y

Special case: if X and Y are independent, then:
E(XY) = E(X)E(Y) and thus oyy =0

2 __ 2 2
UZ—6X+GY

p,(2) is the convolution of p,(x) and Py(¥)

[on board]

Gaussian (a.k.a. “Normal’) densities

One-dimensional:

(@) 1 _ (m—@?
) = e 20
P V2mo?
m

Alt. notation: x ~ N(u,0?)

Multi-dimensional:

pE) = @R @2
@m)N|C|

mean: [0.2,0.8]
cov: [1.0-0.3;
-0.3 0.4]

Gaussian properties

¢ joint density of indep Gaussian RVs is elliptical [casy]

e conditionals of a Gaussian are Gaussian [easy]

* marginals of a Gaussian are Gaussian

e product of two Gaussian dists is Gaussian [casy]

¢ sum of independent Gaussian RVs is Gaussian

* the most random (max entropy) density of given variance

* central limit theorem: sum of many indep. RVs is Gaussian [hard]




let P=C"' (the “precision” matrix)

plai|zs =a) o e lPuimm)2Pe o) et

e~ 2 [Priaf+2(Prz(a—p2)—Pripn)zi+..]

_ ()*%(Ilfﬂﬁr%(aﬂlz))]’u (mfuﬁr%(a*llz))f--

P
Gaussian, with:  p = p; — P—'Z(a )
11

0,2

Conditional: - Pfll
WHHHHHHHEE

Marginal: p(l'l) — /p(j‘) dxo [on board]
/\ Gaussian, with: pe=om

0'2 = Cll

Generalized marginals of a Gaussian

T~ N(jiy,Cy)

z=0'%
p(z) is Gaussian, with:

T

I
=
8

Mz =
2

g, =

w

Correlation and regression

100 TLS regression fit
(largest eigenvector)
_ 50
5 \_ Least-squares
o regression fit
o 4
]
<
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3 « .
-50 Regression
to the mean”
-100
-100 -50 0 50 100

mother's height

Francis Galton (1886). "Regression towards mediocrity in hereditary stature"




Correlation and regression

TLS regression
(largest eigenvector)

\_ Least-squares

regression

100

50

test result 2
o

-50

test result 1

Correlation implies dependency '-

... but not slope
1 1 1 a a

-1
) / 4 // " — T ) \

... and its absence does not imply independence!

0 0
b G ™Y
;g: é;f

Correlation between variables does not uniquely indicate -
the shape of their joint distribution

» Anscombe’s Quartet
Each dataset has the same summary statistics (mean, standard deviation,
correlation), and the datasets are clearly different, and visually distinct.
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More extreme
examples !

X Mean: 54.26
Y Mean: 47.83
X SD : 16.76
Y SD : 26.93
Corr. : -0.06
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Per capita cheese consumption r=0.95
Number of people who died by becoming tangled in their bedsheets -
Nevertheless,

one can find :
correlation if = /://Q

one looks forit! = « « o« w el L e

Worldwide non-commercial space launches
rrelates with

Sociology doctorates awarded (US) r=0.79

Letters in Winning Word of Scripps National Spelling Bee
orrelates with

Number of people killed by venomous spiders r=0.81

http://www.tylervigen.com/spurious-correlations

Covariation/correlation does not imply causatior[

* Correlation does not provide a direction for causality.
For that, you need additional (temporal) information.

* More generally, correlations are often a result of
hidden (unmeasured, uncontrolled) variables...

Example: conditional independence:

H
pA.BIH) = pA|Hp@B|H) @

/N
A v . B

[On board: in Gaussian case, connections are explicit in the precision matrix]

[

Another example: “Simpson’s paradox”

expression of gene B

expression of gene A




[

Milton Friedman’s Thermostat

. True interactions:
O = outside temperature (assumed cold)

I = inside temperature (ideally, constant) Q —_ .

E = energy used for heating O E
A/
9,

Observed statistics, P=C-1:
Statistical observations: .
® O and I uncorrelated @ _— .
o [ and E uncorrelated o E
® O and E anti-correlated
&,

Some nonsensical conclusions:
® O and E have no effect on I, so shut off heater to save money!
® | is irrelevant, and can be ignored. Increases in E cause decreases in O.

Statistical summary cannot replace scientific reasoning/experiments!

Summary: Correlation misinterpretations

* Correlation implies dependency, but does not imply data lie
near a line/plane/hyperplane.

¢ Independent implies uncorrelated. But uncorrelated does
not imply independent.

¢ Correlation does not imply causation (and often arises from
hidden common factors).

* Correlation is a descriptive statistic, and does not
eliminate the need for reasoning/experiments/models!




