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[Efron & Tibshirani, 1998]

• 1600’s: Early notions of data summary/averaging

• 1700’s: Bayesian prob/statistics (Bayes, Laplace)

• 1920’s: Frequentist statistics for science (e.g., Fisher)

• 1940’s: Statistical signal analysis and communication, 
estimation/decision theory (e.g., Shannon, Wiener, etc)

• 1950’s: Return of Bayesian statistics (e.g., Jeffreys, Wald, 
Savage, Jaynes…)

• 1970’s: Computation, optimization, simulation (e.g,. Tukey)

• 2000’s: Machine learning (statistical inference with  
large-scale computing + lots of data)

• Also (since 1950’s): statistical neural/cognitive models!

Some historical context



Statistics as summary description

0.1,  4.5,  -2.3,  0.8,  -1.1,  3.2,  …  

“The purpose of statistics is to replace a quantity of data 
by relatively few quantities which shall ... contain as much 
as possible, ideally the whole, of the relevant information 
contained in the original data” 

- R.A. Fisher, 1934

Standard descriptive statistics

“Central tendency”

“Dispersion”

Data

Descriptive statistics: 1D

• Sample mean  minimizes  the squared error

The most common measures of central tendency & dispersion:

• Sample variance  is  the squared error

(second moment minus squared mean)
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•              : mean (standard choice)

•              : median

•              : mode (location of maximum)

•              : midpoint of range

More generally, can measure dispersion with  
     an “Lp norm”:

 

Descriptive statistics: generalizations

p ! 1
p ! 0

p = 1

Different p values give different measures of central tendency: 

Sample mean: the vector that minimizes  
average squared distance to data points:

Data points:   

Descriptive statistics: 2-D

(analogous to scalar case!)

Sample (total) variance:

Descriptive statistics: 2-D

Sample mean:

Data points:   

(analogous to scalar case!)



• Sample variance, in direction  

Descriptive statistics: 2-D
• Sample mean, in direction  

sample covariance, 

• Sample variance, in direction  

Descriptive statistics: 2-D
• Sample mean, in direction  

sample covariance, 

Descriptive statistics: multi-D
Data points:  matrix     (   data vectors in columns)

Sample mean:

vector of  ones

• Sample variance, in direction  

As we vary direction  , what does the sample variance do?
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(i.e., unit vectors)

û

Recall: rewrite                  with SVD  

Sample variance, in direction  :

Sample mean, in direction  :

Data points:  matrix     (   data vectors in columns)

 sample covariance, 

Descriptive statistics: multi-D

sample mean,  

The shape of a data cloud can be summarized with an ellipse 
(ellipsoid), centered around the mean, using a simple procedure: 
    (1) Subtract mean from all data points (re-centers data around origin) 
    (2) Collect centered data vectors in columns of a matrix, D* 
    (3) Compute the SVD: 

          or use covariance matrix                     

• Columns of V are the principal components (axes) of  the ellipsoid, 
singular values   (or  ) are the corresponding principal radii.  
• Ellipse volume is proportional to product of ’s.   

• Total variance is equal to sum of ’s.
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Principal Component Analysis (PCA)

, square and diagonal, elements 



Olympic gold medalists 
(Paris, 2024) 

3D geometry:  
   shotput, discus, javelin…

Arshad 
Nadeem 

(Pakistan)

Yemisi Ogunleye (Germany)

Valerie Allman (USA)

Eigenvectors/eigenvalues

• For covariance matrix                                          the columns of      
(denoted      ) are eigenvectors, with corresponding eigenvalues      :

V

• An eigenvector of a matrix is a vector that is rescaled by the matrix 
(i.e., the direction is unchanged)  

• The corresponding scale factor is called the eigenvalue 

�k

• For LSI system L,  the eigenvectors are complex exponentials:

 is the Fourier transform,   the kth Fourier basis function,  the 
kth entry of diagonal matrix  containing F.T. of impulse response

Affine transformations

If

then

Cb = MCdM
T

[on board]

Standard case: “re-center” and “normalize” the components:

~bn = M
⇣
~dn � ~a

⌘

then

“r”  
(Pearson  
correlation 
coefficient)

M =

"
1
sx

0
0 1

sy

#
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(translate, then rotate-stretch-rotate)

Let

(mean and covariance transform  
  according to simple rules)



Correlation (r) captures dependency

… but not slope!

Regression (revisited)

\hat{\beta} = \frac{\vec{x}^T \vec{y}}{\vec{x}^T \vec{x}} = \frac{\sigma_{xy}}{\sigma_x^2}

Optimal regression line slope:

proportion of data 
variance explained

� =
~xT~y

~xT~x
=

sxy
s2x

<latexit sha1_base64="B4gxvrAh9xzgF7BO+80eJczCmmU=">AAACM3icbVDLSgMxFM34rPVVdekmWARXZaYU1IVQdCOuKvQFnXbIpHfa0MyDJFNahvknN/6IC0FcKOLWfzB9INp6IHA451xu7nEjzqQyzRdjZXVtfWMzs5Xd3tnd288dHNZlGAsKNRryUDRdIoGzAGqKKQ7NSADxXQ4Nd3Az8RtDEJKFQVWNI2j7pBcwj1GitOTk7mwXFMFX2PYEoYk9BJqM0k4VT9k4TRelUZr+pKWTjCYR6Yw6xdTJ5c2COQVeJtac5NEcFSf3ZHdDGvsQKMqJlC3LjFQ7IUIxyiHN2rGEiNAB6UFL04D4INvJ9OYUn2qli71Q6BcoPFV/TyTEl3LsuzrpE9WXi95E/M9rxcq7aCcsiGIFAZ0t8mKOVYgnBeIuE0AVH2tCqGD6r5j2ia5D6ZqzugRr8eRlUi8WrFLh8r6UL1/P68igY3SCzpCFzlEZ3aIKqiGKHtAzekPvxqPxanwYn7PoijGfOUJ/YHx9A4nFrL8=</latexit>

Error variance:

s2e = s2y � 2�sxy + �2s2x

= s2y �
s2xy
s2x

<latexit sha1_base64="5fDXqZ0VD9lSlsbQW1MH6gt1EZI="></latexit>

Expressed as a proportion of  :σ2
y

s2e
s2y

= 1�
s2xy
s2xs

2
y

= 1� r2
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Probability: an abstract mathematical 
framework for describing random quantities.

Statistics:  use of probability to summarize, 
analyze, and interpret data.   Fundamental to 
all experimental science.



data

{ ⃗xn}

probabilistic 
source

p( ⃗x |θ)
Measurement

Inference

• distributions: discrete and continuous

• expected value,  moments

• transformations: affine, monotonic nonlinear

• cumulative distributions. Quantiles, drawing 
samples 

Univariate Probability (outline)

Probability distributions

∞

−∞∫ x xd  p( ) =1( )
b

a
= ∫ ( )P a< < b d x px x

P(
x)

p(
x)

0 ≤ P(xi ) ≤1,   ∀i

P(xi ) = 1
i
∑

0 ≤ p(x)

p(x)dx = 1
−∞

∞

∫

Discrete random variable Continuous random variable
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a not-quite-fair coin 
(Bernoulli)

sum of rolls of  
two fair dice

clicks of a Geiger counter, 
in a fixed time interval 

(Poisson)

horizontal velocity of gas 
molecules exiting a fan 

(Gaussian)
... and, time between clicks 

(exponential)

Example distributions
roll of a fair die 

(uniform)

-0 1 2 4 53 6 7 8 9 10

[Figure: Sean Owen, Cloudera Engineering]

Expected value (for a discrete random variable)

More generally: (sum over values of R.V.)

<latexit sha1_base64="0UXL6+SMntvmlwVtPb0C1hIlR4g="></latexit>

E (f(x)) =
KX

k=1

f(xk)P (xk)

Sample average: an estimate of the expected value:  

(sum over data samples)

Sample average converges to expected value as one gathers more data…

<latexit sha1_base64="STreYmzUKxv6afxkj41d3dy0aq0=">AAACFnicbVDLSsNAFJ3UV62vqks3g0VoNyERUTeFghtXUsE+oIlhMp20QyeTMDORlpC/cOG3uHCj4laX/o2TtgttPXDhzDn3MvceP2ZUKsv6Ngorq2vrG8XN0tb2zu5eef+gLaNEYNLCEYtE10eSMMpJS1HFSDcWBIU+Ix1/dJX7nQciJI34nZrExA3RgNOAYqS05JVNx0ciDbLquAbr0AkEwqmdpTcZdGQSeimv29l9/gyqY4/XvHLFMq0p4DKx56QC5mh65S+nH+EkJFxhhqTs2Vas3BQJRTEjWclJJIkRHqEB6WnKUUikm07vyuCJVvowiIQuruBU/T2RolDKSejrzhCpoVz0cvE/r5eo4NJNKY8TRTiefRQkDKoI5iHBPhUEKzbRBGFB9a4QD5HORukodQb24sXLpH1q2uemfXtWaTTmaRTBETgGVWCDC9AA16AJWgCDR/AMXsGb8WS8GO/Gx6y1YMxnDsEfGJ8/46qeyw==</latexit>

f̄(x) =
1

N

NX

n=1

f(xn)

a weighted sum over the discrete values
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µx = E(x) =
KX

k=1

xk P (xk)
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A note on notation

• We have, and will continue to use the notation for a “sample 
mean” ( ) and a “sample standard deviation” (s) or variance 
( ). 

• Statistics makes a distinction between these sample values 
and the corresponding “population” values of mean ( ) and 
variance ( ).

x̄
s2

μ
σ2

data

{xn}

histogram

{ck, hk}

probability 
distribution

p(x)

Connecting statistics and probability 
(limit of infinite data)

Expected value (continuous random variable) 

x̄ =
1
N ∑

n

xn x̄ ≈ ∑
k

ckhk = ⃗cTh⃗ μx = ∫ x p(x) dx

data

{xn}

histogram

{ck, hk}

probability 
distribution

p(x)

{center, normalized height}  
of kth bin



[“mean”,    ]µ

[“second moment”, m2]

�2[“variance”,      ]

Note: expectation is an integral, and thus linear, so:

[m2 minus     ]μ2

[“expected value of  f ”]

Expected value (continuous)
E(x) =

Z
x p(x) dx

E(x2) =

Z
x2p(x) dx

E
�
(x� µ)2

�
=

Z
(x� µ)2 p(x) dx

=

Z
x2p(x) dx� µ2

E (f(x)) =

Z
f(x) p(x) dx

E (af(x) + bg(x)) = aE (f(x)) + bE (g(x))

Transformations of scalar random variables
Y = aX + b  “affine” (linear plus constant)

Full distribution: 

Analogous to sample mean/covariance: 

       

      

μY = 𝔼(Y ) = a𝔼(X) + b = aμX + b

σ2
Y = 𝔼 ((Y − μY)2) = 𝔼 ((aX − aμX)2) = a2σ2

X

pY(y) =
1
a

pX( y − b
a )

Y = g(X )

pY ( y) =
pX g

−1( y)( )
′g g−1( y)( )

(assume g is “monotonic” - i.e., derivative > 0)

g(x)

Remake this slide:

-consistent notation with prev slide

- plot p(Y) twith vertical axis o left

- make shaded areas a bit narrower (small bins)

- make shaded areas same size in p(x) p(y), illustrating 
conservation of mass



Cumulative distributions
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Drawing samples - discrete
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Drawing samples - continuous

0
0.

5
1

3) Result is 
uniformly 

distributed! y
50 100 150
0

0.5

1

x

c(
x)

2) Transform 
using the 

cumulative 
distribution 

function

50 100 150
x

p(
x) 1) Sample 

from p(x)

py(y) =
px(c�1(y))

c0(c�1(y))

=
px(c�1(y))

px(c�1(y))

= 1, 0  y  1

Drawing samples - continuous

50 100 150
0

0.5

1

x

c(
x)

2) Transform 
using the 
inverse 

cumulative 
distribution 

function

1) Draw 
uniform 
sample

3) This gives 
a sample 
from p(x) !

50 100 150
x

p(
x)

0
0.

5
1

y

• Joint distributions

• Marginals (integrating)

• Conditionals (slicing)

• Bayes’ rule (inverse probability)

• Statistical independence (separability)

• Mean/Covariance

• Linear transformations

Multi-variate probability (outline)



Joint probability - discrete
“s

ui
t”

“value”

P(Ace) 
P(Heart)

P(Ace & Heart) 
P(Ace & red) 
P(number & Heart)

Conditional probability

A B
A & B

p(A | B) = probability of A given that B is asserted to be true = p(A& B)
p(B)

Neither A nor B

Conditional probability - discrete

P(Ace | Heart) 
P(Ace | red) 
P(number | Heart)



p(x, y)

Joint distribution (continuous)

x
y

p(x,y)
y

p(x) =

Z
p(x, y)dy

p(x, y)

Marginal distribution

p(x, y)

Conditional distribution

p(x|y = 90)



Conditional distribution

p(x|y) = p(x, y)/p(y)

More generally:

normalize (by marginal)slice joint distribution

p(
x
|y

=
90

)

p(x|y = 90) = p(x, y = 90)

�Z
p(x, y = 90)dx

= p(x, y = 90) /p(y = 90)

Bayes’ Rule

p(x|y) = p(y|x) p(x)/p(y)

(a direct consequence of the definition of conditional probability)

Bayes’ Rule

A B
A & B

p(A& B) = p(B)p(A | B)

= p(A)p(B | A)

⇒ p(A | B) = p(B | A)p(A)
p(B)

p(A | B) = probability of A given that B is asserted to be true = p(A& B)
p(B)



P(x|Y=120)

P(x)

Conditional vs. marginal

In general, the marginals for different Y values differ. 
When are they they same?  In particular, when are all 
conditionals equal to the marginal?

Statistical independence

Random variables X and Y are statistically 
independent if (and only if):

Independence implies that all conditionals are equal to the 
corresponding marginal: 

p(x, y) = p(x)p( y) ∀ x, y

p(x | y) = p(x, y) / p( y) = p(x) ∀ x, y

(note: for discrete distributions, this is an outer product!)

For R.V.  ,  ,   ⃗X ⃗μ X = 𝔼( ⃗X ) CX = 𝔼 (( ⃗X − ⃗μ X)( ⃗X − ⃗μ X)T)
Mean, covariance, affine transformations

For R.V. , ⃗Y = M( ⃗X − ⃗a)

analogous to results for sample mean/covariance: 

        

        

⃗μ Y = 𝔼(M( ⃗X − ⃗a))
= M (𝔼( ⃗X ) − ⃗a))
= M ( ⃗μ X − ⃗a)

CY = 𝔼((M( ⃗X − ⃗μ X))(M( ⃗X − ⃗μ X))T)
= M𝔼(( ⃗X − ⃗μ X))( ⃗X − ⃗μ X))T) MT

= MCXMT



Special case: Sum of two RVs

Special case: if X and Y are independent, then:

Let  Z = X + Y,   or  

             is the convolution of               andpZ (z) pX (x) pY ( y)
[on board]

σ2
Z = σ2

X + 2σXY + σ2
Y

μZ = μX + μY

σ2
Z = σ2

X + σ2
Y

σXY = 0 and thus𝔼(XY ) = 𝔼(X)𝔼(Y )

Z = 1⃗T [X
Y]

Gaussian (a.k.a. “Normal”) densities

mean:  [0.2, 0.8]
cov:  [1.0 -0.3;

 -0.3  0.4]

One-dimensional:

Multi-dimensional:

x ⇠ N(µ,�2)Alt. notation:

Gaussian properties

• joint density of indep Gaussian RVs is elliptical   [easy]

• conditionals of a Gaussian are Gaussian   [easy]

• marginals of a Gaussian are Gaussian    [easy]

• product of two Gaussian dists is Gaussian   [easy] 

• sum of independent Gaussian RVs is Gaussian     [moderate]

• the most random (max entropy) density of given variance  [moderate]

• central limit theorem: sum of many indep. RVs is Gaussian   [hard]



~x ⇠ N(~µ,C), let P = C�1

Gaussian, with:

Conditional:

p(x1|x2 = a) / e�
1
2 [P11(x1�µ1)

2+2P12(x1�µ1)(a�µ2)+...]

= e�
1
2 [P11x

2
1+2(P12(a�µ2)�P11µ1)x1+...]

= e
� 1

2

⇣
x1�µ1+

P12
P11

(a�µ2)
⌘
P11

⇣
x1�µ1+

P12
P11

(a�µ2)
⌘
+...

Marginal:

Gaussian, with:

p(x1) =

Z
p(~x) dx2

(the “precision” matrix)

[on board]

μ = μ1 −
P12

P11
(a − μ2)

û

z = ûT~x

µz = ûT ~µx

�2
z = ûTCxû

z

Generalized marginals of a Gaussian

x1

x2

w
p(z) is Gaussian, with:
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Correlation and regression

TLS regression fit 
(largest eigenvector)

Least-squares 
regression fit

“Regression 
to the mean”

Francis Galton (1886). "Regression towards mediocrity in hereditary stature"



-100 -50 0 50 100
test result 1
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Correlation and regression

TLS regression 
(largest eigenvector)

Least-squares 
regression

Correlation implies dependency

… but not slope

 … and its absence does not imply independence!

Correlation between variables does not uniquely indicate 
the shape of their joint distribution



https://www.autodeskresearch.com/publications/samestats

More extreme  
examples !
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p(✓) / sin(✓)(N�2)

Null Hypothesis: 
Distribution of 
normalized  
dot product of 
pairs of  
Gaussian vectors 
in N dimensions:
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Lack of 
correlation is 
favored in N>3 
dimensions
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Worldwide	non-commercial	space	launches
	correlates	with	

Sociology	doctorates	awarded	(US)

Sociology	doctorates	awarded	(US) Worldwide	non-commercial	space	launches

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

500	Degrees	awarded

550	Degrees	awarded

600	Degrees	awarded
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700	Degrees	awarded
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50	Launches

30	Launches

60	Launches
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Letters	in	Winning	Word	of	Scripps	National	Spelling	Bee
	correlates	with	

Number	of	people	killed	by	venomous	spiders

Number	of	people	killed	by	venomous	spidersSpelling	Bee	winning	word

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

0	deaths
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Per	capita	cheese	consumption
	correlates	with	

Number	of	people	who	died	by	becoming	tangled	in	their	bedsheets

Bedsheet	tanglings Cheese	consumed

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

200	deaths

400	deaths

600	deaths

800	deaths

28.5lbs

30lbs

31.5lbs

33lbs
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Nevertheless, 
one can find 
correlation if 
one looks for it!

http://www.tylervigen.com/spurious-correlations

r=0.95

r=0.79

r=0.81

Covariation/correlation does not imply causation

• Correlation does not provide a direction for causality.  
For that, you need additional (temporal) information. 

• More generally, correlations are often a result of  
hidden (unmeasured, uncontrolled) variables…

Example: conditional independence: 
    p(A, B |H) = p(A |H)p(B |H)

A B

H

[On board: in Gaussian case, connections are explicit in the precision matrix]

Another example: “Simpson’s paradox”

+ -

A B

H
H=0

H=1

+



Milton Friedman’s Thermostat

O = outside temperature (assumed cold) 
I = inside temperature (ideally, constant)  
E = energy used for heating 

Statistical observations: 
• O and I uncorrelated 
• I and E uncorrelated 
• O and E anti-correlated

Some nonsensical conclusions: 
• O and E have no effect on I, so shut off heater to save money! 
• I is irrelevant, and can be ignored.  Increases in E cause decreases in O.

-
O

I

E
++

-
O

I

E

True interactions:

Observed  statistics, P=C-1:

Statistical summary cannot replace scientific reasoning/experiments!

• Correlation implies dependency, but does not imply data lie 
near a line/plane/hyperplane.

• Independent implies uncorrelated.  But uncorrelated does 
not imply independent. 

• Correlation does not imply causation (and often arises from 
hidden common factors).

• Correlation is a descriptive statistic, and does not 
eliminate the need for reasoning/experiments/models!

Summary: Correlation misinterpretations


